Abstract
Marked overexpression of the glucose transporter GLUT4 in skeletal muscle membrane fractions of GLUT4 transgenic (TG) mice is accompanied by disproportionately small increases in basal and insulin-stimulated glucose transport activity. Thus we have assessed cell surface GLUT4 by photolabelling with the membrane-impermeant reagent 2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1, 3-bis(D-mannos-4-yloxy)-2-propylamine (ATB-BMPA) and measured the corresponding glucose transport activity using 2-deoxyglucose in isolated extensor digitorum longus (EDL) muscles from non-transgenic (NTG) and GLUT4 TG mice in the absence and presence of 13.3 nM (2000 mu units/ml) insulin, without or with hypoxia as a model of muscle contraction. TG mice displayed elevated rates of glucose transport activity under basal and insulin-stimulated conditions, and in the presence of insulin plus hypoxia, compared with NTG mice. Photoaffinity labelling of cell surface GLUT4 indicated corresponding elevations in plasma membrane GLUT4 in the basal and insulin-stimulated states, and with insulin plus hypoxia, but no difference in cell surface GLUT4 during hypoxia stimulation. Subcellular fractionation of hindlimb muscles confirmed the previously observed 3-fold overexpression of GLUT4 in the TG compared with the NTG mice. These results suggest that: (1) alterations in glucose transport activity which occur with GLUT4 overexpression in EDL muscles are directly related to cell surface GLUT4 content, regardless of the levels observed in the corresponding subcellular membrane fractions, (2) while overexpression of GLUT4 influences both basal and insulin-stimulated glucose transport activity, the response to hypoxia/ contraction-stimulated glucose transport is unchanged, and (3) subcellular fractionation provides little insight into the subcellular trafficking of GLUT4, and whatever relationship is demonstrated in EDL muscles from NTG mice is disrupted on GLUT4 overexpression.
Full Text
The Full Text of this article is available as a PDF (390.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banks E. A., Brozinick J. T., Jr, Yaspelkis B. B., 3rd, Kang H. Y., Ivy J. L. Muscle glucose transport, GLUT-4 content, and degree of exercise training in obese Zucker rats. Am J Physiol. 1992 Nov;263(5 Pt 1):E1010–E1015. doi: 10.1152/ajpendo.1992.263.5.E1015. [DOI] [PubMed] [Google Scholar]
- Bers D. M., Philipson K. D., Nishimoto A. Y. Sodium-calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles. Biochim Biophys Acta. 1980 Sep 18;601(2):358–371. doi: 10.1016/0005-2736(80)90540-4. [DOI] [PubMed] [Google Scholar]
- Brozinick J. T., Jr, Etgen G. J., Jr, Yaspelkis B. B., 3rd, Ivy J. L. Contraction-activated glucose uptake is normal in insulin-resistant muscle of the obese Zucker rat. J Appl Physiol (1985) 1992 Jul;73(1):382–387. doi: 10.1152/jappl.1992.73.1.382. [DOI] [PubMed] [Google Scholar]
- Brozinick J. T., Jr, Etgen G. J., Jr, Yaspelkis B. B., 3rd, Ivy J. L. The effects of muscle contraction and insulin on glucose-transporter translocation in rat skeletal muscle. Biochem J. 1994 Feb 1;297(Pt 3):539–545. doi: 10.1042/bj2970539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brozinick J. T., Jr, Etgen G. J., Jr, Yaspelkis B. B., 3rd, Kang H. Y., Ivy J. L. Effects of exercise training on muscle GLUT-4 protein content and translocation in obese Zucker rats. Am J Physiol. 1993 Sep;265(3 Pt 1):E419–E427. doi: 10.1152/ajpendo.1993.265.3.E419. [DOI] [PubMed] [Google Scholar]
- Brozinick J. T., Jr, Yaspelkis B. B., 3rd, Wilson C. M., Grant K. E., Gibbs E. M., Cushman S. W., Ivy J. L. Glucose transport and GLUT4 protein distribution in skeletal muscle of GLUT4 transgenic mice. Biochem J. 1996 Jan 1;313(Pt 1):133–140. doi: 10.1042/bj3130133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deems R. O., Deacon R. W., Ramlal T., Volchuk A., Klip A., Young D. A. Insulin action on whole body glucose utilization and on muscle glucose transporter translocation in mice. Biochem Biophys Res Commun. 1994 Mar 15;199(2):662–670. doi: 10.1006/bbrc.1994.1279. [DOI] [PubMed] [Google Scholar]
- Dohm G. L., Dolan P. L., Frisell W. R., Dudek R. W. Role of transverse tubules in insulin stimulated muscle glucose transport. J Cell Biochem. 1993 May;52(1):1–7. doi: 10.1002/jcb.240520102. [DOI] [PubMed] [Google Scholar]
- Douen A. G., Ramlal T., Cartee G. D., Klip A. Exercise modulates the insulin-induced translocation of glucose transporters in rat skeletal muscle. FEBS Lett. 1990 Feb 26;261(2):256–260. doi: 10.1016/0014-5793(90)80566-2. [DOI] [PubMed] [Google Scholar]
- Douen A. G., Ramlal T., Klip A., Young D. A., Cartee G. D., Holloszy J. O. Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal muscle. Endocrinology. 1989 Jan;124(1):449–454. doi: 10.1210/endo-124-1-449. [DOI] [PubMed] [Google Scholar]
- Douen A. G., Ramlal T., Rastogi S., Bilan P. J., Cartee G. D., Vranic M., Holloszy J. O., Klip A. Exercise induces recruitment of the "insulin-responsive glucose transporter". Evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle. J Biol Chem. 1990 Aug 15;265(23):13427–13430. [PubMed] [Google Scholar]
- Etgen G. J., Jr, Wilson C. M., Jensen J., Cushman S. W., Ivy J. L. Glucose transport and cell surface GLUT-4 protein in skeletal muscle of the obese Zucker rat. Am J Physiol. 1996 Aug;271(2 Pt 1):E294–E301. doi: 10.1152/ajpendo.1996.271.2.E294. [DOI] [PubMed] [Google Scholar]
- Gibbs E. M., Stock J. L., McCoid S. C., Stukenbrok H. A., Pessin J. E., Stevenson R. W., Milici A. J., McNeish J. D. Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J Clin Invest. 1995 Apr;95(4):1512–1518. doi: 10.1172/JCI117823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodyear L. J., Hirshman M. F., Horton E. S. Exercise-induced translocation of skeletal muscle glucose transporters. Am J Physiol. 1991 Dec;261(6 Pt 1):E795–E799. doi: 10.1152/ajpendo.1991.261.6.E795. [DOI] [PubMed] [Google Scholar]
- Goodyear L. J., Hirshman M. F., Valyou P. M., Horton E. S. Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training. Diabetes. 1992 Sep;41(9):1091–1099. doi: 10.2337/diab.41.9.1091. [DOI] [PubMed] [Google Scholar]
- Hansen P. A., Gulve E. A., Marshall B. A., Gao J., Pessin J. E., Holloszy J. O., Mueckler M. Skeletal muscle glucose transport and metabolism are enhanced in transgenic mice overexpressing the Glut4 glucose transporter. J Biol Chem. 1995 Jan 27;270(4):1679–1684. doi: 10.1074/jbc.270.5.1679. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liu M. L., Gibbs E. M., McCoid S. C., Milici A. J., Stukenbrok H. A., McPherson R. K., Treadway J. L., Pessin J. E. Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11346–11350. doi: 10.1073/pnas.90.23.11346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lund S., Holman G. D., Schmitz O., Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5817–5821. doi: 10.1073/pnas.92.13.5817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lund S., Holman G. D., Schmitz O., Pedersen O. Glut 4 content in the plasma membrane of rat skeletal muscle: comparative studies of the subcellular fractionation method and the exofacial photolabelling technique using ATB-BMPA. FEBS Lett. 1993 Sep 20;330(3):312–318. doi: 10.1016/0014-5793(93)80895-2. [DOI] [PubMed] [Google Scholar]
- Nesher R., Karl I. E., Kipnis D. M. Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. Am J Physiol. 1985 Sep;249(3 Pt 1):C226–C232. doi: 10.1152/ajpcell.1985.249.3.C226. [DOI] [PubMed] [Google Scholar]
- Ploug T., Stallknecht B. M., Pedersen O., Kahn B. B., Ohkuwa T., Vinten J., Galbo H. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am J Physiol. 1990 Dec;259(6 Pt 1):E778–E786. doi: 10.1152/ajpendo.1990.259.6.E778. [DOI] [PubMed] [Google Scholar]
- Ren J. M., Marshall B. A., Gulve E. A., Gao J., Johnson D. W., Holloszy J. O., Mueckler M. Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. J Biol Chem. 1993 Aug 5;268(22):16113–16115. [PubMed] [Google Scholar]
- Treadway J. L., Hargrove D. M., Nardone N. A., McPherson R. K., Russo J. F., Milici A. J., Stukenbrok H. A., Gibbs E. M., Stevenson R. W., Pessin J. E. Enhanced peripheral glucose utilization in transgenic mice expressing the human GLUT4 gene. J Biol Chem. 1994 Nov 25;269(47):29956–29961. [PubMed] [Google Scholar]
- Uyeda K., Racker E. Regulatory mechanisms in carbohydrate metabolism. VII. Hexokinase and phosphofructokinase. J Biol Chem. 1965 Dec;240(12):4682–4688. [PubMed] [Google Scholar]
- Vannucci S. J., Nishimura H., Satoh S., Cushman S. W., Holman G. D., Simpson I. A. Cell surface accessibility of GLUT4 glucose transporters in insulin-stimulated rat adipose cells. Modulation by isoprenaline and adenosine. Biochem J. 1992 Nov 15;288(Pt 1):325–330. doi: 10.1042/bj2880325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson C. M., Cushman S. W. Insulin stimulation of glucose transport activity in rat skeletal muscle: increase in cell surface GLUT4 as assessed by photolabelling. Biochem J. 1994 May 1;299(Pt 3):755–759. doi: 10.1042/bj2990755. [DOI] [PMC free article] [PubMed] [Google Scholar]