Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jan 1;321(Pt 1):133–138. doi: 10.1042/bj3210133

Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates.

J Nielsen 1
PMCID: PMC1218046  PMID: 9003411

Abstract

Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction affinity. This parameter can often be determined from experiments in vitro. The methodology is applicable only to the analysis of simple two-step pathways, but in many cases larger pathways can be lumped into two overall conversions. In cases where this cannot be done it is necessary to apply an extension of the thermokinetic description of reaction rates to include the influence of effectors. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919-927] can be much more widely applied, although it was originally based on linearized kinetics. The methodology of determining elasticity coefficients directly from pool levels is illustrated with an analysis of the first two steps of the biosynthetic pathway of penicillin. The results compare well with previous findings based on a kinetic analysis.

Full Text

The Full Text of this article is available as a PDF (382.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey J. E. Toward a science of metabolic engineering. Science. 1991 Jun 21;252(5013):1668–1675. doi: 10.1126/science.2047876. [DOI] [PubMed] [Google Scholar]
  2. Brown G. C., Hafner R. P., Brand M. D. A 'top-down' approach to the determination of control coefficients in metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):321–325. doi: 10.1111/j.1432-1033.1990.tb15406.x. [DOI] [PubMed] [Google Scholar]
  3. Cameron D. C., Tong I. T. Cellular and metabolic engineering. An overview. Appl Biochem Biotechnol. 1993 Jan-Feb;38(1-2):105–140. doi: 10.1007/BF02916416. [DOI] [PubMed] [Google Scholar]
  4. Christensen L. H., Henriksen C. M., Nielsen J., Villadsen J., Egel-Mitani M. Continuous cultivation of Penicillium chrysogenum. Growth on glucose and penicillin production. J Biotechnol. 1995 Sep 29;42(2):95–107. doi: 10.1016/0168-1656(95)00056-v. [DOI] [PubMed] [Google Scholar]
  5. Delgado J., Liao J. C. Determination of Flux Control Coefficients from transient metabolite concentrations. Biochem J. 1992 Mar 15;282(Pt 3):919–927. doi: 10.1042/bj2820919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Delgado J., Liao J. C. Metabolic control analysis using transient metabolite concentrations. Determination of metabolite concentration control coefficients. Biochem J. 1992 Aug 1;285(Pt 3):965–972. doi: 10.1042/bj2850965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehlde M., Zacchi G. Influence of experimental errors on the determination of flux control coefficients from transient metabolite concentrations. Biochem J. 1996 Feb 1;313(Pt 3):721–727. doi: 10.1042/bj3130721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fell D. A., Sauro H. M. Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur J Biochem. 1985 May 2;148(3):555–561. doi: 10.1111/j.1432-1033.1985.tb08876.x. [DOI] [PubMed] [Google Scholar]
  9. Flint H. J., Tateson R. W., Barthelmess I. B., Porteous D. J., Donachie W. D., Kacser H. Control of the flux in the arginine pathway of Neurospora crassa. Modulations of enzyme activity and concentration. Biochem J. 1981 Nov 15;200(2):231–246. doi: 10.1042/bj2000231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Groen A. K., Wanders R. J., Westerhoff H. V., van der Meer R., Tager J. M. Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem. 1982 Mar 25;257(6):2754–2757. [PubMed] [Google Scholar]
  11. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x. [DOI] [PubMed] [Google Scholar]
  12. Jørgensen H., Nielsen J., Villadsen J., Møllgaard H. Analysis of penicillin V biosynthesis during fed-batch cultivations with a high-yielding strain of Penicillium chrysogenum. Appl Microbiol Biotechnol. 1995 Apr;43(1):123–130. doi: 10.1007/BF00170633. [DOI] [PubMed] [Google Scholar]
  13. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  14. Nielsen J., Jørgensen H. S. Metabolic control analysis of the penicillin biosynthetic pathway in a high-yielding strain of Penicillium chrysogenum. Biotechnol Prog. 1995 May-Jun;11(3):299–305. doi: 10.1021/bp00033a010. [DOI] [PubMed] [Google Scholar]
  15. Rottenberg H. Non-equilibrium thermodynamics of energy conversion in bioenergetics. Biochim Biophys Acta. 1979 Dec 13;549(3-4):225–253. doi: 10.1016/0304-4173(79)90001-6. [DOI] [PubMed] [Google Scholar]
  16. Rottenberg H. The thermodynamic description of enzyme-catalyzed reactions. The linear relation between the reaction rate and the affinity. Biophys J. 1973 Jun;13(6):503–511. doi: 10.1016/S0006-3495(73)86004-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stephanopoulos G., Sinskey A. J. Metabolic engineering--methodologies and future prospects. Trends Biotechnol. 1993 Sep;11(9):392–396. doi: 10.1016/0167-7799(93)90099-U. [DOI] [PubMed] [Google Scholar]
  18. Stucki J. W. The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur J Biochem. 1980 Aug;109(1):269–283. doi: 10.1111/j.1432-1033.1980.tb04792.x. [DOI] [PubMed] [Google Scholar]
  19. Van der Meer R., Westeroff H. V., Van Dam K. Linear relation between rate and thermodynamic force in enzyme-catalyzed reactions. Biochim Biophys Acta. 1980 Jul 8;591(2):488–493. doi: 10.1016/0005-2728(80)90179-6. [DOI] [PubMed] [Google Scholar]
  20. Westerhoff H. V., Groen A. K., Wanders R. J. Modern theories of metabolic control and their applications (review). Biosci Rep. 1984 Jan;4(1):1–22. doi: 10.1007/BF01120819. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES