Abstract
In isolated hepatocytes in suspension, the effect of sorbitol but not that of fructose to increase the concentration of fructose 1-phosphate and to stimulate glucokinase was abolished by 2-hydroxymethyl-4-(4-N,N-dimethylamino-1-piperazino)-pyrimidine (SDI 158), an inhibitor of sorbitol dehydrogenase. In hepatocytes in primary culture, fructose was metabolized at approximately one-quarter of the rate of sorbitol, and was therefore much less potent than the polyol in increasing the concentration of fructose 1-phosphate and the translocation of glucokinase. In cultures, sorbitol, commercial mannitol, fructose, D-glyceraldehyde or high concentrations of glucose caused fructose 1-phosphate formation and glucokinase translocation in parallel. Commercial mannitol was contaminated by approx. 1% sorbitol, which accounted for its effects. The effects of sorbitol, fructose and elevated concentrations of glucose were partly inhibited by ethanol, glycerol and glucosamine. Mannoheptulose increased translocation without affecting fructose 1-phosphate concentration. Kinetic studies performed with recombinant human beta-cell glucokinase indicated that this sugar, in contrast with N-acetylglucosamine, binds to glucokinase competitively with the regulatory protein. All these observations indicate that translocation is promoted by agents that favour the dissociation of the glucokinase-regulatory-protein complex either by binding to the regulatory protein (fructose I-phosphate) or to glucokinase (glucose, mannoheptulose). They support the hypothesis that the regulatory protein of glucokinase acts as an anchor for this enzyme that slows down its release from digitonin-permeabilized cells.
Full Text
The Full Text of this article is available as a PDF (593.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius L. Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state. Biochem J. 1994 Feb 15;298(Pt 1):237–243. doi: 10.1042/bj2980237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agius L. Hexokinase and glucokinase binding in permeabilized guinea-pig hepatocytes. Biochem J. 1994 Nov 1;303(Pt 3):841–846. doi: 10.1042/bj3030841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agius L., Peak M. Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin. Biochem J. 1993 Dec 15;296(Pt 3):785–796. doi: 10.1042/bj2960785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agius L., Peak M., Van Schaftingen E. The regulatory protein of glucokinase binds to the hepatocyte matrix, but, unlike glucokinase, does not translocate during substrate stimulation. Biochem J. 1995 Aug 1;309(Pt 3):711–713. doi: 10.1042/bj3090711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BEAUFAY H., DE DUVE C. Le système hexose-phosphatasique. IV. Spécificité de la glucose-6-phosphatase. Bull Soc Chim Biol (Paris) 1954;36(11-12):1525–1537. [PubMed] [Google Scholar]
- Bartrons R., Hue L., Van Schaftingen E., Hers H. G. Hormonal control of fructose 2,6-bisphosphate concentration in isolated rat hepatocytes. Biochem J. 1983 Sep 15;214(3):829–837. doi: 10.1042/bj2140829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bontemps F., Hue L., Hers H. G. Phosphorylation of glucose in isolated rat hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. Biochem J. 1978 Aug 15;174(2):603–611. doi: 10.1042/bj1740603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claus T. H., Schlumpf J. R., El-Maghrabi M. R., Pilkis S. J. Regulation of the phosphorylation and activity of 6-phosphofructo 1-kinase in isolated hepatocytes by alpha-glycerolphosphate and fructose 2,6-bisphosphate. J Biol Chem. 1982 Jul 10;257(13):7541–7548. [PubMed] [Google Scholar]
- Colville C. A., Seatter M. J., Jess T. J., Gould G. W., Thomas H. M. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Biochem J. 1993 Mar 15;290(Pt 3):701–706. doi: 10.1042/bj2900701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies D. R., Detheux M., Van Schaftingen E. Fructose 1-phosphate and the regulation of glucokinase activity in isolated hepatocytes. Eur J Biochem. 1990 Sep 11;192(2):283–289. doi: 10.1111/j.1432-1033.1990.tb19225.x. [DOI] [PubMed] [Google Scholar]
- Detheux M., Vandercammen A., Van Schaftingen E. Effectors of the regulatory protein acting on liver glucokinase: a kinetic investigation. Eur J Biochem. 1991 Sep 1;200(2):553–561. doi: 10.1111/j.1432-1033.1991.tb16218.x. [DOI] [PubMed] [Google Scholar]
- Geisen K., Utz R., Grötsch H., Lang H. J., Nimmesgern H. Sorbitol-accumulating pyrimidine derivatives. Arzneimittelforschung. 1994 Sep;44(9):1032–1043. [PubMed] [Google Scholar]
- HERS H. G. [Aldose reductase]. Biochim Biophys Acta. 1960 Jan 1;37:120–126. doi: 10.1016/0006-3002(60)90085-8. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lindstad R. I., Hermansen L. F., McKinley-McKee J. S. The kinetic mechanism of sheep liver sorbitol dehydrogenase. Eur J Biochem. 1992 Dec 1;210(2):641–647. doi: 10.1111/j.1432-1033.1992.tb17465.x. [DOI] [PubMed] [Google Scholar]
- Miwa I., Mitsuyama S., Toyoda Y., Nonogaki T., Aoki S., Okuda J. Evidence for the presence of rat liver glucokinase in the nucleus as well as in the cytoplasm. Biochem Int. 1990 Nov;22(4):759–767. [PubMed] [Google Scholar]
- Niculescu L., Veiga-da-Cunha M., Van Schaftingen E. Enzymatic assays of fructose-1-phosphate and fructose-1,6-bisphosphate in the picomole range. Anal Biochem. 1996 Mar 15;235(2):243–244. doi: 10.1006/abio.1996.0121. [DOI] [PubMed] [Google Scholar]
- Okuno Y., Gliemann J. Transport of glucose and fructose in rat hepatocytes at 37 degrees C. Biochim Biophys Acta. 1986 Nov 17;862(2):329–334. doi: 10.1016/0005-2736(86)90235-x. [DOI] [PubMed] [Google Scholar]
- Raushel F. M., Cleland W. W. Bovine liver fructokinase: purification and kinetic properties. Biochemistry. 1977 May 17;16(10):2169–2175. doi: 10.1021/bi00629a020. [DOI] [PubMed] [Google Scholar]
- SALAS J., SALAS M., VINUELA E., SOLS A. GLUCOKINASE OF RABBIT LIVER. J Biol Chem. 1965 Mar;240:1014–1018. [PubMed] [Google Scholar]
- Seglen P. O. Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res. 1973 Dec;82(2):391–398. doi: 10.1016/0014-4827(73)90357-1. [DOI] [PubMed] [Google Scholar]
- Sestoft L., Fleron P. Determination of the kinetic constants of fructose transport and phosphorylation in the perfused rat liver. Biochim Biophys Acta. 1974 Apr 12;345(1):27–38. doi: 10.1016/0005-2736(74)90242-9. [DOI] [PubMed] [Google Scholar]
- Stahl B., Wiesinger H., Hamprecht B. Characteristics of sorbitol uptake in rat glial primary cultures. J Neurochem. 1989 Sep;53(3):665–671. doi: 10.1111/j.1471-4159.1989.tb11755.x. [DOI] [PubMed] [Google Scholar]
- Toyoda Y., Miwa I., Kamiya M., Ogiso S., Nonogaki T., Aoki S., Okuda J. Evidence for glucokinase translocation by glucose in rat hepatocytes. Biochem Biophys Res Commun. 1994 Oct 14;204(1):252–256. doi: 10.1006/bbrc.1994.2452. [DOI] [PubMed] [Google Scholar]
- Toyoda Y., Miwa I., Satake S., Anai M., Oka Y. Nuclear location of the regulatory protein of glucokinase in rat liver and translocation of the regulator to the cytoplasm in response to high glucose. Biochem Biophys Res Commun. 1995 Oct 13;215(2):467–473. doi: 10.1006/bbrc.1995.2488. [DOI] [PubMed] [Google Scholar]
- Van Schaftigen E. Glucosamine-sensitive and -insensitive detritiation of [2-3H]glucose in isolated rat hepatocytes: a study of the contributions of glucokinase and glucose-6-phosphatase. Biochem J. 1995 May 15;308(Pt 1):23–29. doi: 10.1042/bj3080023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Schaftingen E. A protein from rat liver confers to glucokinase the property of being antagonistically regulated by fructose 6-phosphate and fructose 1-phosphate. Eur J Biochem. 1989 Jan 15;179(1):179–184. doi: 10.1111/j.1432-1033.1989.tb14538.x. [DOI] [PubMed] [Google Scholar]
- Van Schaftingen E., Bartrons R., Hers H. G. The mechanism by which ethanol decreases the concentration of fructose 2,6-bisphosphate in the liver. Biochem J. 1984 Sep 1;222(2):511–518. doi: 10.1042/bj2220511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Schaftingen E., Hue L., Hers H. G. Study of the fructose 6-phosphate/fructose 1,6-bi-phosphate cycle in the liver in vivo. Biochem J. 1980 Oct 15;192(1):263–271. doi: 10.1042/bj1920263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Schaftingen E., Opperdoes F. R., Hers H. G. Effects of various metabolic conditions and of the trivalent arsenical melarsen oxide on the intracellular levels of fructose 2,6-bisphosphate and of glycolytic intermediates in Trypanosoma brucei. Eur J Biochem. 1987 Aug 3;166(3):653–661. doi: 10.1111/j.1432-1033.1987.tb13563.x. [DOI] [PubMed] [Google Scholar]
- Van Schaftingen E., Vandercammen A. Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes. Eur J Biochem. 1989 Jan 15;179(1):173–177. doi: 10.1111/j.1432-1033.1989.tb14537.x. [DOI] [PubMed] [Google Scholar]
- Vandercammen A., Van Schaftingen E. Competitive inhibition of liver glucokinase by its regulatory protein. Eur J Biochem. 1991 Sep 1;200(2):545–551. doi: 10.1111/j.1432-1033.1991.tb16217.x. [DOI] [PubMed] [Google Scholar]
- Vandercammen A., Van Schaftingen E. Species and tissue distribution of the regulatory protein of glucokinase. Biochem J. 1993 Sep 1;294(Pt 2):551–556. doi: 10.1042/bj2940551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vandercammen A., Van Schaftingen E. The mechanism by which rat liver glucokinase is inhibited by the regulatory protein. Eur J Biochem. 1990 Jul 31;191(2):483–489. doi: 10.1111/j.1432-1033.1990.tb19147.x. [DOI] [PubMed] [Google Scholar]
- Veiga-Da-Cunha M., Firme P., Romão M. V., Santos H. Application of C Nuclear Magnetic Resonance To Elucidate the Unexpected Biosynthesis of Erythritol by Leuconostoc oenos. Appl Environ Microbiol. 1992 Jul;58(7):2271–2279. doi: 10.1128/aem.58.7.2271-2279.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veiga-da-Cunha M., Courtois S., Michel A., Gosselain E., Van Schaftingen E. Amino acid conservation in animal glucokinases. Identification of residues implicated in the interaction with the regulatory protein. J Biol Chem. 1996 Mar 15;271(11):6292–6297. doi: 10.1074/jbc.271.11.6292. [DOI] [PubMed] [Google Scholar]
- Veiga-da-Cunha M., Xu L. Z., Lee Y. H., Marotta D., Pilkis S. J., Van Schaftingen E. Effect of mutations on the sensitivity of human beta-cell glucokinase to liver regulatory protein. Diabetologia. 1996 Oct;39(10):1173–1179. doi: 10.1007/BF02658503. [DOI] [PubMed] [Google Scholar]
- Weinstein S. P., O'Boyle E., Fisher M., Haber R. S. Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: evidence for hormonal regulation of the hepatic glucose transport system. Endocrinology. 1994 Aug;135(2):649–654. doi: 10.1210/endo.135.2.8033812. [DOI] [PubMed] [Google Scholar]
- Xu L. Z., Weber I. T., Harrison R. W., Gidh-Jain M., Pilkis S. J. Sugar specificity of human beta-cell glucokinase: correlation of molecular models with kinetic measurements. Biochemistry. 1995 May 9;34(18):6083–6092. doi: 10.1021/bi00018a011. [DOI] [PubMed] [Google Scholar]