Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jan 1;321(Pt 1):247–252. doi: 10.1042/bj3210247

The MAL proteolipid is a component of the detergent-insoluble membrane subdomains of human T-lymphocytes.

J Millán 1, R Puertollano 1, L Fan 1, C Rancaño 1, M A Alonso 1
PMCID: PMC1218061  PMID: 9003426

Abstract

The human mal gene, identified during a search for cDNAs selectively expressed during T-cell development, encodes a highly hydrophobic protein belonging to a group of proteins, termed proteolipids, characterized by their unusual property of being soluble in organic solvents used to extract cell lipids. To study the localization of the MAL protein we have prepared stable transfectants expressing the MAL protein tagged with a c-myc epitope (MAL/c-myc) using human epithelial A-498 cells. Immunofluorescence analysis suggested that MAL/c-myc is localized mainly to cholesterol-enriched structures with a post-Golgi location and, at low levels, in early endosomes. Moreover, extraction of A-498 cell membranes with Triton X-100 (TX100) and fractionation by centrifugation to equilibrium in sucrose gradients demonstrated the presence of MAL/c-myc in the detergent-insoluble buoyant fraction, known to be enriched in glycolipids and cholesterol. To compare the behaviour of MAL in T-cells with that in epithelial A-498 cells, we prepared stably transfected cells expressing MAL/c-myc using human Jurkat T-cells. When TX100 extracts from Jurkat cells were subjected to centrifugation to equilibrium in sucrose gradients we found MAL exclusively in the floating fractions, together with molecules characteristic of the T-cell insoluble complexes, such as the tyrosine kinase p56lck, the glycosylphosphatidylinositol-anchored protein CD59 and the ganglioside GM1. These results, taken together, indicate that the MAL proteolipid is a component of the detergent-resistant membrane microdomains present in T-lymphocytes, and suggest that MAL might play a role in modulating the function of these microdomains during T-cell differentiation.

Full Text

The Full Text of this article is available as a PDF (372.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcalde J., Bonay P., Roa A., Vilaro S., Sandoval I. V. Assembly and disassembly of the Golgi complex: two processes arranged in a cis-trans direction. J Cell Biol. 1992 Jan;116(1):69–83. doi: 10.1083/jcb.116.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alonso M. A., Barton D. E., Francke U. Assignment of the T-cell differentiation gene MAL to human chromosome 2, region cen----q13. Immunogenetics. 1988;27(2):91–95. doi: 10.1007/BF00351081. [DOI] [PubMed] [Google Scholar]
  3. Alonso M. A., Weissman S. M. cDNA cloning and sequence of MAL, a hydrophobic protein associated with human T-cell differentiation. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1997–2001. doi: 10.1073/pnas.84.7.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolard J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta. 1986 Dec 22;864(3-4):257–304. doi: 10.1016/0304-4157(86)90002-x. [DOI] [PubMed] [Google Scholar]
  5. Brown D. A. Interactions between GPI-anchored proteins and membrane lipids. Trends Cell Biol. 1992 Nov;2(11):338–343. [PubMed] [Google Scholar]
  6. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  7. Brown D. The tyrosine kinase connection: how GPI-anchored proteins activate T cells. Curr Opin Immunol. 1993 Jun;5(3):349–354. doi: 10.1016/0952-7915(93)90052-t. [DOI] [PubMed] [Google Scholar]
  8. Doyle J. P., Colman D. R. Glial-neuron interactions and the regulation of myelin formation. Curr Opin Cell Biol. 1993 Oct;5(5):779–785. doi: 10.1016/0955-0674(93)90025-l. [DOI] [PubMed] [Google Scholar]
  9. Elias P. M., Goerke J., Friend D. S., Brown B. E. Freeze-fracture identification of sterol-digitonin complexes in cell and liposome membranes. J Cell Biol. 1978 Aug;78(2):577–596. doi: 10.1083/jcb.78.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. doi: 10.1128/mcb.5.12.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fujiwara T., Oda K., Yokota S., Takatsuki A., Ikehara Y. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem. 1988 Dec 5;263(34):18545–18552. [PubMed] [Google Scholar]
  12. Hanada K., Nishijima M., Akamatsu Y., Pagano R. E. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J Biol Chem. 1995 Mar 17;270(11):6254–6260. doi: 10.1074/jbc.270.11.6254. [DOI] [PubMed] [Google Scholar]
  13. Hopkins C. R. Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells. Cell. 1983 Nov;35(1):321–330. doi: 10.1016/0092-8674(83)90235-0. [DOI] [PubMed] [Google Scholar]
  14. Kim T., Fiedler K., Madison D. L., Krueger W. H., Pfeiffer S. E. Cloning and characterization of MVP17: a developmentally regulated myelin protein in oligodendrocytes. J Neurosci Res. 1995 Oct 15;42(3):413–422. doi: 10.1002/jnr.490420316. [DOI] [PubMed] [Google Scholar]
  15. Lippincott-Schwartz J., Yuan L., Tipper C., Amherdt M., Orci L., Klausner R. D. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell. 1991 Nov 1;67(3):601–616. doi: 10.1016/0092-8674(91)90534-6. [DOI] [PubMed] [Google Scholar]
  16. Rancaño C., Rubio T., Alonso M. A. Alternative splicing of human T-cell-specific MAL mRNA and its correlation with the exon/intron organization of the gene. Genomics. 1994 May 15;21(2):447–450. doi: 10.1006/geno.1994.1294. [DOI] [PubMed] [Google Scholar]
  17. Rancaño C., Rubio T., Correas I., Alonso M. A. Genomic structure and subcellular localization of MAL, a human T-cell-specific proteolipid protein. J Biol Chem. 1994 Mar 18;269(11):8159–8164. [PubMed] [Google Scholar]
  18. Robinson M. S. The role of clathrin, adaptors and dynamin in endocytosis. Curr Opin Cell Biol. 1994 Aug;6(4):538–544. doi: 10.1016/0955-0674(94)90074-4. [DOI] [PubMed] [Google Scholar]
  19. Schaeren-Wiemers N., Valenzuela D. M., Frank M., Schwab M. E. Characterization of a rat gene, rMAL, encoding a protein with four hydrophobic domains in central and peripheral myelin. J Neurosci. 1995 Aug;15(8):5753–5764. doi: 10.1523/JNEUROSCI.15-08-05753.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schlesinger M. J. Proteolipids. Annu Rev Biochem. 1981;50:193–206. doi: 10.1146/annurev.bi.50.070181.001205. [DOI] [PubMed] [Google Scholar]
  21. Simons K., Wandinger-Ness A. Polarized sorting in epithelia. Cell. 1990 Jul 27;62(2):207–210. doi: 10.1016/0092-8674(90)90357-k. [DOI] [PubMed] [Google Scholar]
  22. Stefanová I., Horejsí V., Ansotegui I. J., Knapp W., Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science. 1991 Nov 15;254(5034):1016–1019. doi: 10.1126/science.1719635. [DOI] [PubMed] [Google Scholar]
  23. Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. doi: 10.1128/mcb.8.1.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Trapp B. D., Kidd G. J., Hauer P., Mulrenin E., Haney C. A., Andrews S. B. Polarization of myelinating Schwann cell surface membranes: role of microtubules and the trans-Golgi network. J Neurosci. 1995 Mar;15(3 Pt 1):1797–1807. doi: 10.1523/JNEUROSCI.15-03-01797.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Veillette A., Bookman M. A., Horak E. M., Bolen J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell. 1988 Oct 21;55(2):301–308. doi: 10.1016/0092-8674(88)90053-0. [DOI] [PubMed] [Google Scholar]
  26. Wood S. A., Park J. E., Brown W. J. Brefeldin A causes a microtubule-mediated fusion of the trans-Golgi network and early endosomes. Cell. 1991 Nov 1;67(3):591–600. doi: 10.1016/0092-8674(91)90533-5. [DOI] [PubMed] [Google Scholar]
  27. Zacchetti D., Peränen J., Murata M., Fiedler K., Simons K. VIP17/MAL, a proteolipid in apical transport vesicles. FEBS Lett. 1995 Dec 27;377(3):465–469. doi: 10.1016/0014-5793(95)01396-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES