Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jan 15;321(Pt 2):265–279. doi: 10.1042/bj3210265

Membrane protein secretases.

N M Hooper 1, E H Karran 1, A J Turner 1
PMCID: PMC1218065  PMID: 9020855

Abstract

A diverse range of membrane proteins of Type 1 or Type II topology also occur as a circulating, soluble form. These soluble forms are often derived from the membrane form by proteolysis by a group of enzymes referred to collectively as 'secretases' or 'sheddases'. The cleavage generally occurs close to the extracellular face of the membrane, releasing physiologically active protein. This secretion process also provides a mechanism for down-regulating the protein at the cell surface. Examples of such post-translational proteolysis are seen in the Alzheimer's amyloid precursor protein, the vasoregulatory enzyme angiotensin converting enzyme, transforming growth factor-alpha, the tumour necrosis factor ligand and receptor superfamilies, certain cytokine receptors, and others. Since the proteins concerned are involved in pathophysiological processes such as neurodegeneration, apoptosis, oncogenesis and inflammation, the secretases could provide novel therapeutic targets. Recent characterization of these individual secretases has revealed common features, particularly sensitivity to certain metalloprotease inhibitors and upregulation of activity by phorbol esters. It is therefore likely that a closely related family of metallosecretases controls the surface expression of multiple integral membrane proteins. Current knowledge of the various secretases are compared in this Review, and strategies for cell-free assays of such proteases are outlined as a prelude to their ultimate purification and cloning.

Full Text

The Full Text of this article is available as a PDF (891.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Misono K. S. Proteolytic cleavage of atrial natriuretic factor receptor in bovine adrenal membranes by endogenous metalloendopeptidase. Effects on guanylate cyclase activity and ligand-binding specificity. Eur J Biochem. 1992 Oct 15;209(2):717–724. doi: 10.1111/j.1432-1033.1992.tb17340.x. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. P., Esch F. S., Keim P. S., Sambamurti K., Lieberburg I., Robakis N. K. Exact cleavage site of Alzheimer amyloid precursor in neuronal PC-12 cells. Neurosci Lett. 1991 Jul 8;128(1):126–128. doi: 10.1016/0304-3940(91)90775-o. [DOI] [PubMed] [Google Scholar]
  3. Andres J. L., Stanley K., Cheifetz S., Massagué J. Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor-beta. J Cell Biol. 1989 Dec;109(6 Pt 1):3137–3145. doi: 10.1083/jcb.109.6.3137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Antony A. C., Verma R. S., Unune A. R., LaRosa J. A. Identification of a Mg2+-dependent protease in human placenta which cleaves hydrophobic folate-binding proteins to hydrophilic forms. J Biol Chem. 1989 Feb 5;264(4):1911–1914. [PubMed] [Google Scholar]
  5. Arribas J., Coodly L., Vollmer P., Kishimoto T. K., Rose-John S., Massagué J. Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J Biol Chem. 1996 May 10;271(19):11376–11382. doi: 10.1074/jbc.271.19.11376. [DOI] [PubMed] [Google Scholar]
  6. Arribas J., Massagué J. Transforming growth factor-alpha and beta-amyloid precursor protein share a secretory mechanism. J Cell Biol. 1995 Feb;128(3):433–441. doi: 10.1083/jcb.128.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bazil V., Horejsí V. Shedding of the CD44 adhesion molecule from leukocytes induced by anti-CD44 monoclonal antibody simulating the effect of a natural receptor ligand. J Immunol. 1992 Aug 1;149(3):747–753. [PubMed] [Google Scholar]
  8. Bazil V., Strominger J. L. CD43, the major sialoglycoprotein of human leukocytes, is proteolytically cleaved from the surface of stimulated lymphocytes and granulocytes. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3792–3796. doi: 10.1073/pnas.90.9.3792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bazil V., Strominger J. L. Metalloprotease and serine protease are involved in cleavage of CD43, CD44, and CD16 from stimulated human granulocytes. Induction of cleavage of L-selectin via CD16. J Immunol. 1994 Feb 1;152(3):1314–1322. [PubMed] [Google Scholar]
  10. Bazil V., Strominger J. L. Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J Immunol. 1991 Sep 1;147(5):1567–1574. [PubMed] [Google Scholar]
  11. Beldent V., Michaud A., Bonnefoy C., Chauvet M. T., Corvol P. Cell surface localization of proteolysis of human endothelial angiotensin I-converting enzyme. Effect of the amino-terminal domain in the solubilization process. J Biol Chem. 1995 Dec 1;270(48):28962–28969. doi: 10.1074/jbc.270.48.28962. [DOI] [PubMed] [Google Scholar]
  12. Beldent V., Michaud A., Wei L., Chauvet M. T., Corvol P. Proteolytic release of human angiotensin-converting enzyme. Localization of the cleavage site. J Biol Chem. 1993 Dec 15;268(35):26428–26434. [PubMed] [Google Scholar]
  13. Bennett T. A., Lynam E. B., Sklar L. A., Rogelj S. Hydroxamate-based metalloprotease inhibitor blocks shedding of L-selectin adhesion molecule from leukocytes: functional consequences for neutrophil aggregation. J Immunol. 1996 May 1;156(9):3093–3097. [PubMed] [Google Scholar]
  14. Berg M., James S. P. Human neutrophils release the Leu-8 lymph node homing receptor during cell activation. Blood. 1990 Dec 1;76(11):2381–2388. [PubMed] [Google Scholar]
  15. Bernfield M., Sanderson R. D. Syndecan, a developmentally regulated cell surface proteoglycan that binds extracellular matrix and growth factors. Philos Trans R Soc Lond B Biol Sci. 1990 Mar 12;327(1239):171–186. doi: 10.1098/rstb.1990.0052. [DOI] [PubMed] [Google Scholar]
  16. Bodovitz S., Klein W. L. Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J Biol Chem. 1996 Feb 23;271(8):4436–4440. doi: 10.1074/jbc.271.8.4436. [DOI] [PubMed] [Google Scholar]
  17. Bohm S. K., Kong W., Bromme D., Smeekens S. P., Anderson D. C., Connolly A., Kahn M., Nelken N. A., Coughlin S. R., Payan D. G. Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J. 1996 Mar 15;314(Pt 3):1009–1016. doi: 10.1042/bj3141009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  19. Bosenberg M. W., Pandiella A., Massagué J. Activated release of membrane-anchored TGF-alpha in the absence of cytosol. J Cell Biol. 1993 Jul;122(1):95–101. doi: 10.1083/jcb.122.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Bosenberg M. W., Pandiella A., Massagué J. The cytoplasmic carboxy-terminal amino acid specifies cleavage of membrane TGF alpha into soluble growth factor. Cell. 1992 Dec 24;71(7):1157–1165. doi: 10.1016/s0092-8674(05)80064-9. [DOI] [PubMed] [Google Scholar]
  21. Brakebusch C., Varfolomeev E. E., Batkin M., Wallach D. Structural requirements for inducible shedding of the p55 tumor necrosis factor receptor. J Biol Chem. 1994 Dec 23;269(51):32488–32496. [PubMed] [Google Scholar]
  22. Brown A. M., Tummolo D. M., Spruyt M. A., Jacobsen J. S., Sonnenberg-Reines J. Evaluation of cathepsins D and G and EC 3.4.24.15 as candidate beta-secretase proteases using peptide and amyloid precursor protein substrates. J Neurochem. 1996 Jun;66(6):2436–2445. doi: 10.1046/j.1471-4159.1996.66062436.x. [DOI] [PubMed] [Google Scholar]
  23. Brunner G., Metz C. N., Nguyen H., Gabrilove J., Patel S. R., Davitz M. A., Rifkin D. B., Wilson E. L. An endogenous glycosylphosphatidylinositol-specific phospholipase D releases basic fibroblast growth factor-heparan sulfate proteoglycan complexes from human bone marrow cultures. Blood. 1994 Apr 15;83(8):2115–2125. [PubMed] [Google Scholar]
  24. Busciglio J., Gabuzda D. H., Matsudaira P., Yankner B. A. Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2092–2096. doi: 10.1073/pnas.90.5.2092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Campanero M. R., Pulido R., Alonso J. L., Pivel J. P., Pimentel-Muiños F. X., Fresno M., Sánchez-Madrid F. Down-regulation by tumor necrosis factor-alpha of neutrophil cell surface expression of the sialophorin CD43 and the hyaluronate receptor CD44 through a proteolytic mechanism. Eur J Immunol. 1991 Dec;21(12):3045–3048. doi: 10.1002/eji.1830211222. [DOI] [PubMed] [Google Scholar]
  26. Caporaso G. L., Gandy S. E., Buxbaum J. D., Ramabhadran T. V., Greengard P. Protein phosphorylation regulates secretion of Alzheimer beta/A4 amyloid precursor protein. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3055–3059. doi: 10.1073/pnas.89.7.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Cappelluti E., Strom S. C., Harris R. B. Potential role of two novel elastase-like enzymes in processing pro-transforming growth factor-alpha. Biochemistry. 1993 Jan 19;32(2):551–560. doi: 10.1021/bi00053a021. [DOI] [PubMed] [Google Scholar]
  28. Chatis P. A., Morrison T. G. Characterization of the soluble glycoprotein released from vesicular stomatitis virus-infected cells. J Virol. 1983 Jan;45(1):80–90. doi: 10.1128/jvi.45.1.80-90.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Chen A., Engel P., Tedder T. F. Structural requirements regulate endoproteolytic release of the L-selectin (CD62L) adhesion receptor from the cell surface of leukocytes. J Exp Med. 1995 Aug 1;182(2):519–530. doi: 10.1084/jem.182.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Cheng H. J., Flanagan J. G. Transmembrane kit ligand cleavage does not require a signal in the cytoplasmic domain and occurs at a site dependent on spacing from the membrane. Mol Biol Cell. 1994 Sep;5(9):943–953. doi: 10.1091/mbc.5.9.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Chitambar C. R., Zivkovic Z. Release of soluble transferrin receptor from the surface of human leukemic HL60 cells. Blood. 1989 Aug 1;74(2):602–608. [PubMed] [Google Scholar]
  32. Citron M., Diehl T. S., Capell A., Haass C., Teplow D. B., Selkoe D. J. Inhibition of amyloid beta-protein production in neural cells by the serine protease inhibitor AEBSF. Neuron. 1996 Jul;17(1):171–179. doi: 10.1016/s0896-6273(00)80290-1. [DOI] [PubMed] [Google Scholar]
  33. Citron M., Teplow D. B., Selkoe D. J. Generation of amyloid beta protein from its precursor is sequence specific. Neuron. 1995 Mar;14(3):661–670. doi: 10.1016/0896-6273(95)90323-2. [DOI] [PubMed] [Google Scholar]
  34. Colotta F., Orlando S., Fadlon E. J., Sozzani S., Matteucci C., Mantovani A. Chemoattractants induce rapid release of the interleukin 1 type II decoy receptor in human polymorphonuclear cells. J Exp Med. 1995 Jun 1;181(6):2181–2186. doi: 10.1084/jem.181.6.2181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Couet J., Sar S., Jolivet A., Hai M. T., Milgrom E., Misrahi M. Shedding of human thyrotropin receptor ectodomain. Involvement of a matrix metalloprotease. J Biol Chem. 1996 Feb 23;271(8):4545–4552. doi: 10.1074/jbc.271.8.4545. [DOI] [PubMed] [Google Scholar]
  36. Coughlin S. R. Protease-activated receptors start a family. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9200–9202. doi: 10.1073/pnas.91.20.9200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Crowe P. D., Walter B. N., Mohler K. M., Otten-Evans C., Black R. A., Ware C. F. A metalloprotease inhibitor blocks shedding of the 80-kD TNF receptor and TNF processing in T lymphocytes. J Exp Med. 1995 Mar 1;181(3):1205–1210. doi: 10.1084/jem.181.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Decoster E., Vanhaesebroeck B., Vandenabeele P., Grooten J., Fiers W. Generation and biological characterization of membrane-bound, uncleavable murine tumor necrosis factor. J Biol Chem. 1995 Aug 4;270(31):18473–18478. doi: 10.1074/jbc.270.31.18473. [DOI] [PubMed] [Google Scholar]
  39. Derynck R., Roberts A. B., Winkler M. E., Chen E. Y., Goeddel D. V. Human transforming growth factor-alpha: precursor structure and expression in E. coli. Cell. 1984 Aug;38(1):287–297. doi: 10.1016/0092-8674(84)90550-6. [DOI] [PubMed] [Google Scholar]
  40. DiStefano P. S., Johnson E. M., Jr Identification of a truncated form of the nerve growth factor receptor. Proc Natl Acad Sci U S A. 1988 Jan;85(1):270–274. doi: 10.1073/pnas.85.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Downing J. R., Roussel M. F., Sherr C. J. Ligand and protein kinase C downmodulate the colony-stimulating factor 1 receptor by independent mechanisms. Mol Cell Biol. 1989 Jul;9(7):2890–2896. doi: 10.1128/mcb.9.7.2890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Dyrks T., Dyrks E., Mönning U., Urmoneit B., Turner J., Beyreuther K. Generation of beta A4 from the amyloid protein precursor and fragments thereof. FEBS Lett. 1993 Nov 29;335(1):89–93. doi: 10.1016/0014-5793(93)80446-2. [DOI] [PubMed] [Google Scholar]
  43. Ehlers M. R., Chen Y. N., Riordan J. F. Spontaneous solubilization of membrane-bound human testis angiotensin-converting enzyme expressed in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1009–1013. doi: 10.1073/pnas.88.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry. 1989 Jun 27;28(13):5311–5318. doi: 10.1021/bi00439a001. [DOI] [PubMed] [Google Scholar]
  45. Ehlers M. R., Riordan J. F. Membrane proteins with soluble counterparts: role of proteolysis in the release of transmembrane proteins. Biochemistry. 1991 Oct 22;30(42):10065–10074. doi: 10.1021/bi00106a001. [DOI] [PubMed] [Google Scholar]
  46. Ehlers M. R., Scholle R. R., Riordan J. F. Proteolytic release of human angiotensin-converting enzyme expressed in Chinese hamster ovary cells is enhanced by phorbol ester. Biochem Biophys Res Commun. 1995 Jan 17;206(2):541–547. doi: 10.1006/bbrc.1995.1077. [DOI] [PubMed] [Google Scholar]
  47. Ehlers M. R., Schwager S. L., Scholle R. R., Manji G. A., Brandt W. F., Riordan J. F. Proteolytic release of membrane-bound angiotensin-converting enzyme: role of the juxtamembrane stalk sequence. Biochemistry. 1996 Jul 23;35(29):9549–9559. doi: 10.1021/bi9602425. [DOI] [PubMed] [Google Scholar]
  48. Elwood P. C., Deutsch J. C., Kolhouse J. F. The conversion of the human membrane-associated folate binding protein (folate receptor) to the soluble folate binding protein by a membrane-associated metalloprotease. J Biol Chem. 1991 Feb 5;266(4):2346–2353. [PubMed] [Google Scholar]
  49. Engelmann H., Aderka D., Rubinstein M., Rotman D., Wallach D. A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J Biol Chem. 1989 Jul 15;264(20):11974–11980. [PubMed] [Google Scholar]
  50. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  51. Erdös E. G., Skidgel R. A. The angiotensin I-converting enzyme. Lab Invest. 1987 Apr;56(4):345–348. [PubMed] [Google Scholar]
  52. Esch F. S., Keim P. S., Beattie E. C., Blacher R. W., Culwell A. R., Oltersdorf T., McClure D., Ward P. J. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science. 1990 Jun 1;248(4959):1122–1124. doi: 10.1126/science.2111583. [DOI] [PubMed] [Google Scholar]
  53. Feehan C., Darlak K., Kahn J., Walcheck B., Spatola A. F., Kishimoto T. K. Shedding of the lymphocyte L-selectin adhesion molecule is inhibited by a hydroxamic acid-based protease inhibitor. Identification with an L-selectin-alkaline phosphatase reporter. J Biol Chem. 1996 Mar 22;271(12):7019–7024. doi: 10.1074/jbc.271.12.7019. [DOI] [PubMed] [Google Scholar]
  54. Flanagan J. G., Chan D. C., Leder P. Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell. 1991 Mar 8;64(5):1025–1035. doi: 10.1016/0092-8674(91)90326-t. [DOI] [PubMed] [Google Scholar]
  55. Fujimoto J., Stewart S. J., Levy R. Immunochemical analysis of the released Leu-2 (T8) molecule. J Exp Med. 1984 Jul 1;160(1):116–124. doi: 10.1084/jem.160.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Gearing A. J., Beckett P., Christodoulou M., Churchill M., Clements J., Davidson A. H., Drummond A. H., Galloway W. A., Gilbert R., Gordon J. L. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature. 1994 Aug 18;370(6490):555–557. doi: 10.1038/370555a0. [DOI] [PubMed] [Google Scholar]
  57. Gliniak B. C., Kabat D. Leukemogenic membrane glycoprotein encoded by Friend spleen focus-forming virus: transport to cell surfaces and shedding are controlled by disulfide-bonded dimerization and by cleavage of a hydrophobic membrane anchor. J Virol. 1989 Sep;63(9):3561–3568. doi: 10.1128/jvi.63.9.3561-3568.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Graf D., Müller S., Korthäuer U., van Kooten C., Weise C., Kroczek R. A. A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur J Immunol. 1995 Jun;25(6):1749–1754. doi: 10.1002/eji.1830250639. [DOI] [PubMed] [Google Scholar]
  59. Gullberg U., Lantz M., Lindvall L., Olsson I., Himmler A. Involvement of an Asn/Val cleavage site in the production of a soluble form of a human tumor necrosis factor (TNF) receptor. Site-directed mutagenesis of a putative cleavage site in the p55 TNF receptor chain. Eur J Cell Biol. 1992 Aug;58(2):307–312. [PubMed] [Google Scholar]
  60. Guy G. R., Gordon J. Coordinated action of IgE and a B-cell-stimulatory factor on the CD23 receptor molecule up-regulates B-lymphocyte growth. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6239–6243. doi: 10.1073/pnas.84.17.6239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Haass C., Hung A. Y., Schlossmacher M. G., Teplow D. B., Selkoe D. J. beta-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem. 1993 Feb 15;268(5):3021–3024. [PubMed] [Google Scholar]
  62. Haass C., Koo E. H., Mellon A., Hung A. Y., Selkoe D. J. Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature. 1992 Jun 11;357(6378):500–503. doi: 10.1038/357500a0. [DOI] [PubMed] [Google Scholar]
  63. Halban P. A., Irminger J. C. Sorting and processing of secretory proteins. Biochem J. 1994 Apr 1;299(Pt 1):1–18. doi: 10.1042/bj2990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Hansen H. P., Kisseleva T., Kobarg J., Horn-Lohrens O., Havsteen B., Lemke H. A zinc metalloproteinase is responsible for the release of CD30 on human tumor cell lines. Int J Cancer. 1995 Nov 27;63(5):750–756. doi: 10.1002/ijc.2910630524. [DOI] [PubMed] [Google Scholar]
  65. Hardy J., Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci. 1991 Oct;12(10):383–388. doi: 10.1016/0165-6147(91)90609-v. [DOI] [PubMed] [Google Scholar]
  66. Harrison D., Phillips J. H., Lanier L. L. Involvement of a metalloprotease in spontaneous and phorbol ester-induced release of natural killer cell-associated Fc gamma RIII (CD16-II). J Immunol. 1991 Nov 15;147(10):3459–3465. [PubMed] [Google Scholar]
  67. Higaki J., Quon D., Zhong Z., Cordell B. Inhibition of beta-amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron. 1995 Mar;14(3):651–659. doi: 10.1016/0896-6273(95)90322-4. [DOI] [PubMed] [Google Scholar]
  68. Hooper N. M. Angiotensin converting enzyme: implications from molecular biology for its physiological functions. Int J Biochem. 1991;23(7-8):641–647. doi: 10.1016/0020-711x(91)90032-i. [DOI] [PubMed] [Google Scholar]
  69. Hooper N. M., Hesp R. J., Tieku S. Metabolism of aspartame by human and pig intestinal microvillar peptidases. Biochem J. 1994 Mar 15;298(Pt 3):635–639. doi: 10.1042/bj2980635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Hooper N. M., Keen J., Pappin D. J., Turner A. J. Pig kidney angiotensin converting enzyme. Purification and characterization of amphipathic and hydrophilic forms of the enzyme establishes C-terminal anchorage to the plasma membrane. Biochem J. 1987 Oct 1;247(1):85–93. doi: 10.1042/bj2470085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Hooper N. M., Turner A. J. Specificity of the Alzheimer's amyloid precursor protein alpha-secretase. Trends Biochem Sci. 1995 Jan;20(1):15–16. doi: 10.1016/s0968-0004(00)88942-2. [DOI] [PubMed] [Google Scholar]
  72. Huang E. J., Nocka K. H., Buck J., Besmer P. Differential expression and processing of two cell associated forms of the kit-ligand: KL-1 and KL-2. Mol Biol Cell. 1992 Mar;3(3):349–362. doi: 10.1091/mbc.3.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Ikezawa H., Yamanegi M., Taguchi R., Miyashita T., Ohyabu T. Studies on phosphatidylinositol phosphodiesterase (phospholipase C type) of Bacillus cereus. I. purification, properties and phosphatase-releasing activity. Biochim Biophys Acta. 1976 Nov 19;450(2):154–164. [PubMed] [Google Scholar]
  74. Iwai N., Matsunaga M., Kita T., Tei M., Kawai C. Regulation of angiotensin converting enzyme activity in cultured human vascular endothelial cells. Biochem Biophys Res Commun. 1987 Dec 31;149(3):1179–1185. doi: 10.1016/0006-291x(87)90532-8. [DOI] [PubMed] [Google Scholar]
  75. Jung T. M., Dailey M. O. Rapid modulation of homing receptors (gp90MEL-14) induced by activators of protein kinase C. Receptor shedding due to accelerated proteolytic cleavage at the cell surface. J Immunol. 1990 Apr 15;144(8):3130–3136. [PubMed] [Google Scholar]
  76. Kahn J., Ingraham R. H., Shirley F., Migaki G. I., Kishimoto T. K. Membrane proximal cleavage of L-selectin: identification of the cleavage site and a 6-kD transmembrane peptide fragment of L-selectin. J Cell Biol. 1994 Apr;125(2):461–470. doi: 10.1083/jcb.125.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Kang J., Lemaire H. G., Unterbeck A., Salbaum J. M., Masters C. L., Grzeschik K. H., Multhaup G., Beyreuther K., Müller-Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987 Feb 19;325(6106):733–736. doi: 10.1038/325733a0. [DOI] [PubMed] [Google Scholar]
  78. Katsura K., Park M., Gatanaga M., Yu E. C., Takishima K., Granger G. A., Gatanaga T. Identification of the proteolytic enzyme which cleaves human p75 TNF receptor in vitro. Biochem Biophys Res Commun. 1996 May 15;222(2):298–302. doi: 10.1006/bbrc.1996.0738. [DOI] [PubMed] [Google Scholar]
  79. Kayagaki N., Kawasaki A., Ebata T., Ohmoto H., Ikeda S., Inoue S., Yoshino K., Okumura K., Yagita H. Metalloproteinase-mediated release of human Fas ligand. J Exp Med. 1995 Dec 1;182(6):1777–1783. doi: 10.1084/jem.182.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Kenny A. J., Fulcher I. S., McGill K. A., Kershaw D. Proteins of the kidney microvillar membrane. Reconstitution of endopeptidase in liposomes shows that it is a short-stalked protein. Biochem J. 1983 Jun 1;211(3):755–762. doi: 10.1042/bj2110755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Kishimoto T. K., Jutila M. A., Berg E. L., Butcher E. C. Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science. 1989 Sep 15;245(4923):1238–1241. doi: 10.1126/science.2551036. [DOI] [PubMed] [Google Scholar]
  82. Kojro E., Fahrenholz F. Ligand-induced cleavage of the V2 vasopressin receptor by a plasma membrane metalloproteinase. J Biol Chem. 1995 Mar 24;270(12):6476–6481. doi: 10.1074/jbc.270.12.6476. [DOI] [PubMed] [Google Scholar]
  83. Koo E. H., Squazzo S. L. Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem. 1994 Jul 1;269(26):17386–17389. [PubMed] [Google Scholar]
  84. Kriegler M., Perez C., DeFay K., Albert I., Lu S. D. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell. 1988 Apr 8;53(1):45–53. doi: 10.1016/0092-8674(88)90486-2. [DOI] [PubMed] [Google Scholar]
  85. Lammers G., Jamieson J. C. Studies on the effect of lysosomotropic agents on the release of Gal beta 1-4GlcNAc alpha-2,6-sialytransferase from rat liver slices during the acute-phase response. Biochem J. 1989 Jul 15;261(2):389–393. doi: 10.1042/bj2610389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Leca G., Mansur S. E., Bensussan A. Expression of VCAM-1 (CD106) by a subset of TCR gamma delta-bearing lymphocyte clones. Involvement of a metalloprotease in the specific hydrolytic release of the soluble isoform. J Immunol. 1995 Feb 1;154(3):1069–1077. [PubMed] [Google Scholar]
  87. Letellier M., Nakajima T., Pulido-Cejudo G., Hofstetter H., Delespesse G. Mechanism of formation of human IgE-binding factors (soluble CD23): III. Evidence for a receptor (Fc epsilon RII)-associated proteolytic activity. J Exp Med. 1990 Sep 1;172(3):693–700. doi: 10.1084/jem.172.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Loenen W. A., De Vries E., Gravestein L. A., Hintzen R. Q., Van Lier R. A., Borst J. The CD27 membrane receptor, a lymphocyte-specific member of the nerve growth factor receptor family, gives rise to a soluble form by protein processing that does not involve receptor endocytosis. Eur J Immunol. 1992 Feb;22(2):447–455. doi: 10.1002/eji.1830220224. [DOI] [PubMed] [Google Scholar]
  89. Lopez J. A., Chung D. W., Fujikawa K., Hagen F. S., Papayannopoulou T., Roth G. J. Cloning of the alpha chain of human platelet glycoprotein Ib: a transmembrane protein with homology to leucine-rich alpha 2-glycoprotein. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5615–5619. doi: 10.1073/pnas.84.16.5615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Louvard D., Maroux S., Vannier C., Desnuelle P. Topological studies on the hydrolases bound to the intestinal brush border membrane. I. Solubilization by papain and Triton X-100. Biochim Biophys Acta. 1975 Jan 28;375(2):235–248. [PubMed] [Google Scholar]
  91. Low M. G., Finean J. B. Release of alkaline phosphatase from membranes by a phosphatidylinositol-specific phospholipase C. Biochem J. 1977 Oct 1;167(1):281–284. doi: 10.1042/bj1670281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Lu H. S., Clogston C. L., Wypych J., Fausset P. R., Lauren S., Mendiaz E. A., Zsebo K. M., Langley K. E. Amino acid sequence and post-translational modification of stem cell factor isolated from buffalo rat liver cell-conditioned medium. J Biol Chem. 1991 May 5;266(13):8102–8107. [PubMed] [Google Scholar]
  93. Luhrs C. A., Slomiany B. L. A human membrane-associated folate binding protein is anchored by a glycosyl-phosphatidylinositol tail. J Biol Chem. 1989 Dec 25;264(36):21446–21449. [PubMed] [Google Scholar]
  94. López-Casillas F., Cheifetz S., Doody J., Andres J. L., Lane W. S., Massagué J. Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system. Cell. 1991 Nov 15;67(4):785–795. doi: 10.1016/0092-8674(91)90073-8. [DOI] [PubMed] [Google Scholar]
  95. Majumdar M. K., Feng L., Medlock E., Toksoz D., Williams D. A. Identification and mutation of primary and secondary proteolytic cleavage sites in murine stem cell factor cDNA yields biologically active, cell-associated protein. J Biol Chem. 1994 Jan 14;269(2):1237–1242. [PubMed] [Google Scholar]
  96. Maruyama K., Kametani F., Usami M., Yamao-Harigaya W., Tanaka K. "Secretase," Alzheimer amyloid protein precursor secreting enzyme is not sequence-specific. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1670–1676. doi: 10.1016/0006-291x(91)91767-7. [DOI] [PubMed] [Google Scholar]
  97. Massagué J. Transforming growth factor-alpha. A model for membrane-anchored growth factors. J Biol Chem. 1990 Dec 15;265(35):21393–21396. [PubMed] [Google Scholar]
  98. Masters C. L., Simms G., Weinman N. A., Multhaup G., McDonald B. L., Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4245–4249. doi: 10.1073/pnas.82.12.4245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. McGeehan G. M., Becherer J. D., Bast R. C., Jr, Boyer C. M., Champion B., Connolly K. M., Conway J. G., Furdon P., Karp S., Kidao S. Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature. 1994 Aug 18;370(6490):558–561. doi: 10.1038/370558a0. [DOI] [PubMed] [Google Scholar]
  101. Migaki G. I., Kahn J., Kishimoto T. K. Mutational analysis of the membrane-proximal cleavage site of L-selectin: relaxed sequence specificity surrounding the cleavage site. J Exp Med. 1995 Aug 1;182(2):549–557. doi: 10.1084/jem.182.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Mohler K. M., Sleath P. R., Fitzner J. N., Cerretti D. P., Alderson M., Kerwar S. S., Torrance D. S., Otten-Evans C., Greenstreet T., Weerawarna K. Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature. 1994 Jul 21;370(6486):218–220. doi: 10.1038/370218a0. [DOI] [PubMed] [Google Scholar]
  103. Mostov K. E., Kraehenbuhl J. P., Blobel G. Receptor-mediated transcellular transport of immunoglobulin: synthesis of secretory component as multiple and larger transmembrane forms. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7257–7261. doi: 10.1073/pnas.77.12.7257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Mullan M., Crawford F., Axelman K., Houlden H., Lilius L., Winblad B., Lannfelt L. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet. 1992 Aug;1(5):345–347. doi: 10.1038/ng0892-345. [DOI] [PubMed] [Google Scholar]
  105. Müllberg J., Durie F. H., Otten-Evans C., Alderson M. R., Rose-John S., Cosman D., Black R. A., Mohler K. M. A metalloprotease inhibitor blocks shedding of the IL-6 receptor and the p60 TNF receptor. J Immunol. 1995 Dec 1;155(11):5198–5205. [PubMed] [Google Scholar]
  106. Müllberg J., Oberthür W., Lottspeich F., Mehl E., Dittrich E., Graeve L., Heinrich P. C., Rose-John S. The soluble human IL-6 receptor. Mutational characterization of the proteolytic cleavage site. J Immunol. 1994 May 15;152(10):4958–4968. [PubMed] [Google Scholar]
  107. Müllberg J., Schooltink H., Stoyan T., Günther M., Graeve L., Buse G., Mackiewicz A., Heinrich P. C., Rose-John S. The soluble interleukin-6 receptor is generated by shedding. Eur J Immunol. 1993 Feb;23(2):473–480. doi: 10.1002/eji.1830230226. [DOI] [PubMed] [Google Scholar]
  108. Müllberg J., Schooltink H., Stoyan T., Heinrich P. C., Rose-John S. Protein kinase C activity is rate limiting for shedding of the interleukin-6 receptor. Biochem Biophys Res Commun. 1992 Dec 15;189(2):794–800. doi: 10.1016/0006-291x(92)92272-y. [DOI] [PubMed] [Google Scholar]
  109. Nishiyama A., Lin X. H., Stallcup W. B. Generation of truncated forms of the NG2 proteoglycan by cell surface proteolysis. Mol Biol Cell. 1995 Dec;6(12):1819–1832. doi: 10.1091/mbc.6.12.1819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Nophar Y., Kemper O., Brakebusch C., Englemann H., Zwang R., Aderka D., Holtmann H., Wallach D. Soluble forms of tumor necrosis factor receptors (TNF-Rs). The cDNA for the type I TNF-R, cloned using amino acid sequence data of its soluble form, encodes both the cell surface and a soluble form of the receptor. EMBO J. 1990 Oct;9(10):3269–3278. doi: 10.1002/j.1460-2075.1990.tb07526.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Oppong S. Y., Hooper N. M. Characterization of a secretase activity which releases angiotensin-converting enzyme from the membrane. Biochem J. 1993 Jun 1;292(Pt 2):597–603. doi: 10.1042/bj2920597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Pandiella A., Bosenberg M. W., Huang E. J., Besmer P., Massagué J. Cleavage of membrane-anchored growth factors involves distinct protease activities regulated through common mechanisms. J Biol Chem. 1992 Nov 25;267(33):24028–24033. [PubMed] [Google Scholar]
  113. Pandiella A., Massagué J. Cleavage of the membrane precursor for transforming growth factor alpha is a regulated process. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1726–1730. doi: 10.1073/pnas.88.5.1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Perez C., Albert I., DeFay K., Zachariades N., Gooding L., Kriegler M. A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. Cell. 1990 Oct 19;63(2):251–258. doi: 10.1016/0092-8674(90)90158-b. [DOI] [PubMed] [Google Scholar]
  115. Porteu F., Brockhaus M., Wallach D., Engelmann H., Nathan C. F. Human neutrophil elastase releases a ligand-binding fragment from the 75-kDa tumor necrosis factor (TNF) receptor. Comparison with the proteolytic activity responsible for shedding of TNF receptors from stimulated neutrophils. J Biol Chem. 1991 Oct 5;266(28):18846–18853. [PubMed] [Google Scholar]
  116. Preece G., Murphy G., Ager A. Metalloproteinase-mediated regulation of L-selectin levels on leucocytes. J Biol Chem. 1996 May 17;271(20):11634–11640. doi: 10.1074/jbc.271.20.11634. [DOI] [PubMed] [Google Scholar]
  117. Ramchandran R., Sen G. C., Misono K., Sen I. Regulated cleavage-secretion of the membrane-bound angiotensin-converting enzyme. J Biol Chem. 1994 Jan 21;269(3):2125–2130. [PubMed] [Google Scholar]
  118. Ramchandran R., Sen I. Cleavage processing of angiotensin-converting enzyme by a membrane-associated metalloprotease. Biochemistry. 1995 Oct 3;34(39):12645–12652. doi: 10.1021/bi00039a021. [DOI] [PubMed] [Google Scholar]
  119. Ravetch J. V., Perussia B. Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med. 1989 Aug 1;170(2):481–497. doi: 10.1084/jem.170.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Rieu P., Porteu F., Bessou G., Lesavre P., Halbwachs-Mecarelli L. Human neutrophils release their major membrane sialoprotein, leukosialin (CD43), during cell activation. Eur J Immunol. 1992 Nov;22(11):3021–3026. doi: 10.1002/eji.1830221138. [DOI] [PubMed] [Google Scholar]
  121. Robache-Gallea S., Morand V., Bruneau J. M., Schoot B., Tagat E., Réalo E., Chouaib S., Roman-Roman S. In vitro processing of human tumor necrosis factor-alpha. J Biol Chem. 1995 Oct 6;270(40):23688–23692. doi: 10.1074/jbc.270.40.23688. [DOI] [PubMed] [Google Scholar]
  122. Robb R. J., Kutny R. M. Structure-function relationships for the IL 2-receptor system. IV. Analysis of the sequence and ligand-binding properties of soluble Tac protein. J Immunol. 1987 Aug 1;139(3):855–862. [PubMed] [Google Scholar]
  123. Roberts S. B., Ripellino J. A., Ingalls K. M., Robakis N. K., Felsenstein K. M. Non-amyloidogenic cleavage of the beta-amyloid precursor protein by an integral membrane metalloendopeptidase. J Biol Chem. 1994 Jan 28;269(4):3111–3116. [PubMed] [Google Scholar]
  124. Robinson P. J. Two different biosynthetic pathways for the secretion of Qa region-associated class I antigens by mouse lymphocytes. Proc Natl Acad Sci U S A. 1987 Jan;84(2):527–531. doi: 10.1073/pnas.84.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Rose-John S., Heinrich P. C. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J. 1994 Jun 1;300(Pt 2):281–290. doi: 10.1042/bj3000281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Sakaguchi H., Hirose S., Kume T., Hagiwara H. Minimal functional size of porcine lung and testicular angiotensin-converting enzymes deduced from radiation inactivation analysis. Interaction of two highly homologous domains in somatic isoenzyme. FEBS Lett. 1992 Jun 29;305(2):144–146. doi: 10.1016/0014-5793(92)80882-h. [DOI] [PubMed] [Google Scholar]
  127. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  128. Scuderi P. Suppression of human leukocyte tumor necrosis factor secretion by the serine protease inhibitor p-toluenesulfonyl-L-arginine methyl ester (TAME). J Immunol. 1989 Jul 1;143(1):168–173. [PubMed] [Google Scholar]
  129. Sen I., Samanta H., Livingston W., 3rd, Sen G. C. Establishment of transfected cell lines producing testicular angiotensin-converting enzyme. Structural relationship between its secreted and cellular forms. J Biol Chem. 1991 Nov 15;266(32):21985–21990. [PubMed] [Google Scholar]
  130. Serra-Pages C., Saito H., Streuli M. Mutational analysis of proprotein processing, subunit association, and shedding of the LAR transmembrane protein tyrosine phosphatase. J Biol Chem. 1994 Sep 23;269(38):23632–23641. [PubMed] [Google Scholar]
  131. Seubert P., Oltersdorf T., Lee M. G., Barbour R., Blomquist C., Davis D. L., Bryant K., Fritz L. C., Galasko D., Thal L. J. Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature. 1993 Jan 21;361(6409):260–263. doi: 10.1038/361260a0. [DOI] [PubMed] [Google Scholar]
  132. Simons M., de Strooper B., Multhaup G., Tienari P. J., Dotti C. G., Beyreuther K. Amyloidogenic processing of the human amyloid precursor protein in primary cultures of rat hippocampal neurons. J Neurosci. 1996 Feb 1;16(3):899–908. doi: 10.1523/JNEUROSCI.16-03-00899.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Sisodia S. S. Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6075–6079. doi: 10.1073/pnas.89.13.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Sisodia S. S., Koo E. H., Beyreuther K., Unterbeck A., Price D. L. Evidence that beta-amyloid protein in Alzheimer's disease is not derived by normal processing. Science. 1990 Apr 27;248(4954):492–495. doi: 10.1126/science.1691865. [DOI] [PubMed] [Google Scholar]
  135. Solter P. F., Hoffmann W. E. Canine corticosteroid-induced alkaline phosphatase in serum was solubilized by phospholipase activity in vivo. Am J Physiol. 1995 Aug;269(2 Pt 1):G278–G286. doi: 10.1152/ajpgi.1995.269.2.G278. [DOI] [PubMed] [Google Scholar]
  136. Spertini O., Freedman A. S., Belvin M. P., Penta A. C., Griffin J. D., Tedder T. F. Regulation of leukocyte adhesion molecule-1 (TQ1, Leu-8) expression and shedding by normal and malignant cells. Leukemia. 1991 Apr;5(4):300–308. [PubMed] [Google Scholar]
  137. Stein J., Rettenmier C. W. Proteolytic processing of a plasma membrane-bound precursor to human macrophage colony-stimulating factor (CSF-1) is accelerated by phorbol ester. Oncogene. 1991 Apr;6(4):601–605. [PubMed] [Google Scholar]
  138. Studdy P. R., Lapworth R., Bird R. Angiotensin-converting enzyme and its clinical significance--a review. J Clin Pathol. 1983 Aug;36(8):938–947. doi: 10.1136/jcp.36.8.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Sármay G., Rozsnyay Z., Szabó I., Biró A., Gergely J. Modulation of type II Fc gamma receptor expression on activated human B lymphocytes. Eur J Immunol. 1991 Mar;21(3):541–549. doi: 10.1002/eji.1830210303. [DOI] [PubMed] [Google Scholar]
  140. Tanaka M., Suda T., Takahashi T., Nagata S. Expression of the functional soluble form of human fas ligand in activated lymphocytes. EMBO J. 1995 Mar 15;14(6):1129–1135. doi: 10.1002/j.1460-2075.1995.tb07096.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Tiesman J., Hart C. E. Identification of a soluble receptor for platelet-derived growth factor in cell-conditioned medium and human plasma. J Biol Chem. 1993 May 5;268(13):9621–9628. [PubMed] [Google Scholar]
  142. Turner A. J., Murphy L. J. Molecular pharmacology of endothelin converting enzymes. Biochem Pharmacol. 1996 Jan 26;51(2):91–102. doi: 10.1016/0006-2952(95)02036-5. [DOI] [PubMed] [Google Scholar]
  143. Turner A. J. PIG-tailed membrane proteins. Essays Biochem. 1994;28:113–127. [PubMed] [Google Scholar]
  144. Verma R. S., Antony A. C. Kinetic analysis, isolation, and characterization of hydrophilic folate-binding proteins released from chorionic villi cultured under serum-free conditions. J Biol Chem. 1991 Jul 5;266(19):12522–12535. [PubMed] [Google Scholar]
  145. Verma R. S., Gullapalli S., Antony A. C. Evidence that the hydrophobicity of isolated, in situ, and de novo-synthesized native human placental folate receptors is a function of glycosyl-phosphatidylinositol anchoring to membranes. J Biol Chem. 1992 Feb 25;267(6):4119–4127. [PubMed] [Google Scholar]
  146. Vogel M., Kowalewski H., Zimmermann H., Hooper N. M., Turner A. J. Soluble low-Km 5'-nucleotidase from electric-ray (Torpedo marmorata) electric organ and bovine cerebral cortex is derived from the glycosyl-phosphatidylinositol-anchored ectoenzyme by phospholipase C cleavage. Biochem J. 1992 Jun 15;284(Pt 3):621–624. doi: 10.1042/bj2840621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Walcheck B., Kahn J., Fisher J. M., Wang B. B., Fisk R. S., Payan D. G., Feehan C., Betageri R., Darlak K., Spatola A. F. Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature. 1996 Apr 25;380(6576):720–723. doi: 10.1038/380720a0. [DOI] [PubMed] [Google Scholar]
  148. Wang R., Meschia J. F., Cotter R. J., Sisodia S. S. Secretion of the beta/A4 amyloid precursor protein. Identification of a cleavage site in cultured mammalian cells. J Biol Chem. 1991 Sep 5;266(25):16960–16964. [PubMed] [Google Scholar]
  149. Wei L., Alhenc-Gelas F., Soubrier F., Michaud A., Corvol P., Clauser E. Expression and characterization of recombinant human angiotensin I-converting enzyme. Evidence for a C-terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes. J Biol Chem. 1991 Mar 25;266(9):5540–5546. [PubMed] [Google Scholar]
  150. Williams L. M., Gibbons D. L., Gearing A., Maini R. N., Feldmann M., Brennan F. M. Paradoxical effects of a synthetic metalloproteinase inhibitor that blocks both p55 and p75 TNF receptor shedding and TNF alpha processing in RA synovial membrane cell cultures. J Clin Invest. 1996 Jun 15;97(12):2833–2841. doi: 10.1172/JCI118739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Williams T. A., Barnes K., Kenny A. J., Turner A. J., Hooper N. M. A comparison of the zinc contents and substrate specificities of the endothelial and testicular forms of porcine angiotensin converting enzyme and the preparation of isoenzyme-specific antisera. Biochem J. 1992 Dec 15;288(Pt 3):875–881. doi: 10.1042/bj2880875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Wong S. T., Winchell L. F., McCune B. K., Earp H. S., Teixidó J., Massagué J., Herman B., Lee D. C. The TGF-alpha precursor expressed on the cell surface binds to the EGF receptor on adjacent cells, leading to signal transduction. Cell. 1989 Feb 10;56(3):495–506. doi: 10.1016/0092-8674(89)90252-3. [DOI] [PubMed] [Google Scholar]
  153. Xu H., Sweeney D., Greengard P., Gandy S. Metabolism of Alzheimer beta-amyloid precursor protein: regulation by protein kinase A in intact cells and in a cell-free system. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4081–4084. doi: 10.1073/pnas.93.9.4081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Yamasaki K., Taga T., Hirata Y., Yawata H., Kawanishi Y., Seed B., Taniguchi T., Hirano T., Kishimoto T. Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science. 1988 Aug 12;241(4867):825–828. doi: 10.1126/science.3136546. [DOI] [PubMed] [Google Scholar]
  155. Yang X. Y., Mackins J. Y., Li Q. J., Antony A. C. Isolation and characterization of a folate receptor-directed metalloprotease from human placenta. J Biol Chem. 1996 May 10;271(19):11493–11499. doi: 10.1074/jbc.271.19.11493. [DOI] [PubMed] [Google Scholar]
  156. Zhang D., Botos I., Gomis-Rüth F. X., Doll R., Blood C., Njoroge F. G., Fox J. W., Bode W., Meyer E. F. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d). Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8447–8451. doi: 10.1073/pnas.91.18.8447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Zhong Z., Higaki J., Murakami K., Wang Y., Catalano R., Quon D., Cordell B. Secretion of beta-amyloid precursor protein involves multiple cleavage sites. J Biol Chem. 1994 Jan 7;269(1):627–632. [PubMed] [Google Scholar]
  158. del Pozo M. A., Pulido R., Muñoz C., Alvarez V., Humbría A., Campanero M. R., Sánchez-Madrid F. Regulation of ICAM-3 (CD50) membrane expression on human neutrophils through a proteolytic shedding mechanism. Eur J Immunol. 1994 Nov;24(11):2586–2594. doi: 10.1002/eji.1830241104. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES