Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jan 15;321(Pt 2):333–339. doi: 10.1042/bj3210333

Vanadium oxoanions and cAMP-dependent protein kinase: an anti-substrate inhibitor.

S Pluskey 1, M Mahroof-Tahir 1, D C Crans 1, D S Lawrence 1
PMCID: PMC1218073  PMID: 9020863

Abstract

Vanadium oxoions have been shown to elicit a wide range of effects in biological systems, including an increase in the quantity of phosphorylated proteins. This response has been attributed to the inhibition of protein phosphatases, the indirect activation of protein kinases via stimulation of enzymes at early steps in signal transduction pathways and/or the direct activation of protein kinases. We have evaluated the latter possibility by exploring the effects of vanadate, decavanadate and vanadyl cation species on the activity of the cAMP-dependent protein kinase (PKA), a serine/threonine kinase. Vanadate, in the form of monomer, dimer, tetramer and pentamer species, neither inhibits nor activates PKA. In marked contrast, decavandate is a competitive inhibitor (Ki = 1.8 +/- 0.1 mM) of kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly), a peptide-based substrate. This inhibition pattern is especially surprising, since the negatively charged decavanadate would not be predicted to bind to the region of the active site of the enzyme that accommodates the positively charged kemptide substrate. Our studies suggest that decavanadate can associate with kemptide in solution, which would prevent kemptide from interacting with the enzyme. Vanadium(IV) also inhibits the PKA-catalysed phosphorylation of kemptide, but with an IC50 of 366 +/- 10 microM. However, in this case V4+ appears to bind to the Mg(2+)-binding site, since it can substitute for Mg2+. In the absence of Mg2+, the optimal concentration of vanadium(IV) for the PKA-catalysed phosphorylation of kemptide is 100 microM, with concentrations above 100 microM being markedly inhibitory. However, even at the optimal 100 microM V4+ concentration, the Vmax and K(m) values (for kemptide) are significantly less favourable than those obtained in the presence of 100 microM Mg2+. In summary, we have found that oxovanadium ions can directly alter the activity of the serine/threonine-specific PKA.

Full Text

The Full Text of this article is available as a PDF (535.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. N., Kondo H., Granot J., Kaiser E. T., Mildvan A. S. Magnetic resonance and kinetic studies of the manganese(II) ion and substrate complexes of the catalytic subunit of adenosine 3',5'-monophosphate dependent protein kinase from bovine heart. Biochemistry. 1979 Apr 3;18(7):1230–1238. doi: 10.1021/bi00574a018. [DOI] [PubMed] [Google Scholar]
  2. Boyd D. W., Kustin K., Niwa M. Do vanadate polyanions inhibit phosphotransferase enzymes? Biochim Biophys Acta. 1985 Mar 1;827(3):472–475. doi: 10.1016/0167-4838(85)90235-3. [DOI] [PubMed] [Google Scholar]
  3. Brown D. J., Gordon J. A. The stimulation of pp60v-src kinase activity by vanadate in intact cells accompanies a new phosphorylation state of the enzyme. J Biol Chem. 1984 Aug 10;259(15):9580–9586. [PubMed] [Google Scholar]
  4. Brownsey R. W., Dong G. W. Evidence for selective effects of vanadium on adipose cell metabolism involving actions on cAMP-dependent protein kinase. Mol Cell Biochem. 1995 Dec 6;153(1-2):131–137. doi: 10.1007/BF01075928. [DOI] [PubMed] [Google Scholar]
  5. Catalan R. E., Martinez A. M., Aragones M. D., Godoy J. E., Robles A., Miguel B. G. Effects of vanadate on heart protein kinase. Biochem Med. 1982 Dec;28(3):353–357. doi: 10.1016/0006-2944(82)90090-4. [DOI] [PubMed] [Google Scholar]
  6. Catalán R. E., Martínez A. M., Aragonés M. D. Effects of vanadate on the cyclic AMP-protein kinase system in rat liver. Biochem Biophys Res Commun. 1980 Sep 30;96(2):672–677. doi: 10.1016/0006-291x(80)91407-2. [DOI] [PubMed] [Google Scholar]
  7. Collett M. S., Belzer S. K., Kamp L. E. Enzymatic characteristics of pp60v-src isolated from vanadium-treated transformed cells. J Cell Biochem. 1984;26(2):95–106. doi: 10.1002/jcb.240260205. [DOI] [PubMed] [Google Scholar]
  8. Cook P. F., Neville M. E., Jr, Vrana K. E., Hartl F. T., Roskoski R., Jr Adenosine cyclic 3',5'-monophosphate dependent protein kinase: kinetic mechanism for the bovine skeletal muscle catalytic subunit. Biochemistry. 1982 Nov 9;21(23):5794–5799. doi: 10.1021/bi00266a011. [DOI] [PubMed] [Google Scholar]
  9. Crans D. C., Sudhakar K., Zamborelli T. J. Interaction of rabbit muscle aldolase at high ionic strengths with vanadate and other oxoanions. Biochemistry. 1992 Jul 28;31(29):6812–6821. doi: 10.1021/bi00144a023. [DOI] [PubMed] [Google Scholar]
  10. Cremo C. R., Loo J. A., Edmonds C. G., Hatlelid K. M. Vanadate catalyzes photocleavage of adenylate kinase at proline-17 in the phosphate-binding loop. Biochemistry. 1992 Jan 21;31(2):491–497. doi: 10.1021/bi00117a027. [DOI] [PubMed] [Google Scholar]
  11. DeMaster E. G., Mitchell A. A comparison of arsenate and vanadate as inhibitors or uncouplers of mitochondrial and glycolytic energy metabolism. Biochemistry. 1973 Sep 11;12(19):3616–3621. doi: 10.1021/bi00743a007. [DOI] [PubMed] [Google Scholar]
  12. Grinstein S., Furuya W., Lu D. J., Mills G. B. Vanadate stimulates oxygen consumption and tyrosine phosphorylation in electropermeabilized human neutrophils. J Biol Chem. 1990 Jan 5;265(1):318–327. [PubMed] [Google Scholar]
  13. Heffetz D., Bushkin I., Dror R., Zick Y. The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J Biol Chem. 1990 Feb 15;265(5):2896–2902. [PubMed] [Google Scholar]
  14. Kliks S. C., Shioda T., Haigwood N. L., Levy J. A. V3 variability can influence the ability of an antibody to neutralize or enhance infection by diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11518–11522. doi: 10.1073/pnas.90.24.11518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lopez V., Stevens T., Lindquist R. N. Vanadium ion inhibition of alkaline phosphatase-catalyzed phosphate ester hydrolysis. Arch Biochem Biophys. 1976 Jul;175(1):31–38. doi: 10.1016/0003-9861(76)90482-3. [DOI] [PubMed] [Google Scholar]
  16. Lord K. A., Reed G. H. Vanadyl(IV) complexes with pyruvate kinase: activation of the enzyme and electron paramagnetic resonance properties of ternary complexes with the protein. Arch Biochem Biophys. 1990 Aug 15;281(1):124–131. doi: 10.1016/0003-9861(90)90421-t. [DOI] [PubMed] [Google Scholar]
  17. Markham G. D. Structure of the divalent metal ion activator binding site of S-adenosylmethionine synthetase studied by vanadyl(IV) electron paramagnetic resonance. Biochemistry. 1984 Jan 31;23(3):470–478. doi: 10.1021/bi00298a011. [DOI] [PubMed] [Google Scholar]
  18. Nour-Eldeen A. F., Craig M. M., Gresser M. J. Interaction of inorganic vanadate with glucose-6-phosphate dehydrogenase. Nonenzymic formation of glucose 6-vanadate. J Biol Chem. 1985 Jun 10;260(11):6836–6842. [PubMed] [Google Scholar]
  19. Prorok M., Lawrence D. S. Cryopreservation of the cyclic 3',5'-adenosine monophosphate-dependent protein kinase from bovine cardiac muscle. J Biochem Biophys Methods. 1989 May;18(3):167–175. doi: 10.1016/0165-022x(89)90001-8. [DOI] [PubMed] [Google Scholar]
  20. Prorok M., Sukumaran D. K., Lawrence D. S. The cyclic AMP-dependent protein kinase from bovine cardiac muscle is a homoserine kinase. J Biol Chem. 1989 Oct 25;264(30):17727–17733. [PubMed] [Google Scholar]
  21. Qamar R., Yoon M. Y., Cook P. F. Kinetic mechanism of the adenosine 3',5'-monophosphate dependent protein kinase catalytic subunit in the direction of magnesium adenosine 5'-diphosphate phosphorylation. Biochemistry. 1992 Oct 20;31(41):9986–9992. doi: 10.1021/bi00156a018. [DOI] [PubMed] [Google Scholar]
  22. Soman G., Chang Y. C., Graves D. J. Effect of oxyanions of the early transition metals on rabbit skeletal muscle phosphorylase. Biochemistry. 1983 Oct 11;22(21):4994–5000. doi: 10.1021/bi00290a018. [DOI] [PubMed] [Google Scholar]
  23. Tamura S., Brown T. A., Whipple J. H., Fujita-Yamaguchi Y., Dubler R. E., Cheng K., Larner J. A novel mechanism for the insulin-like effect of vanadate on glycogen synthase in rat adipocytes. J Biol Chem. 1984 May 25;259(10):6650–6658. [PubMed] [Google Scholar]
  24. VanEtten R. L., Waymack P. P., Rehkop D. M. Letter: Transition metal ion inhibition of enzyme-catalyzed phosphate ester displacement reactions. J Am Chem Soc. 1974 Oct 16;96(21):6782–6785. doi: 10.1021/ja00828a053. [DOI] [PubMed] [Google Scholar]
  25. Villar-Palasi C., Guinovart J. J., Gómez-Foix A. M., Rodriguez-Gil J. E., Bosch F. Effects of vanadate on protein kinases in rat hepatocytes. Biochem J. 1989 Sep 1;262(2):563–567. doi: 10.1042/bj2620563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Willsky G. R., White D. A., McCabe B. C. Metabolism of added orthovanadate to vanadyl and high-molecular-weight vanadates by Saccharomyces cerevisiae. J Biol Chem. 1984 Nov 10;259(21):13273–13281. [PubMed] [Google Scholar]
  27. Yang D. C., Brown A. B., Chan T. M. Stimulation of tyrosine-specific protein phosphorylation and phosphatidylinositol phosphorylation by orthovanadate in rat liver plasma membrane. Arch Biochem Biophys. 1989 Nov 1;274(2):659–662. doi: 10.1016/0003-9861(89)90481-5. [DOI] [PubMed] [Google Scholar]
  28. Zheng J., Knighton D. R., ten Eyck L. F., Karlsson R., Xuong N., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry. 1993 Mar 9;32(9):2154–2161. doi: 10.1021/bi00060a005. [DOI] [PubMed] [Google Scholar]
  29. Zick Y., Sagi-Eisenberg R. A combination of H2O2 and vanadate concomitantly stimulates protein tyrosine phosphorylation and polyphosphoinositide breakdown in different cell lines. Biochemistry. 1990 Nov 6;29(44):10240–10245. doi: 10.1021/bi00496a013. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES