Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jan 15;321(Pt 2):341–346. doi: 10.1042/bj3210341

Decreased carbonic anhydrase III levels in the liver of the mouse mutant 'toxic milk' (tx) due to copper accumulation.

A Grimes 1, J Paynter 1, I D Walker 1, M Bhave 1, J F Mercer 1
PMCID: PMC1218074  PMID: 9020864

Abstract

The mouse mutant 'toxic milk' (tx) is characterized by marked hepatic accumulation of copper, similar to that found in patients with the genetic disorder of copper transport, Wilson disease. In addition, lactating tx females produce copper-deficient milk. To characterize further the biochemical basis of this defect, Western blots of tissue extracts from normal and tx mice were probed with various heavy-metal radioisotopes (63Ni. 65Zn and 64Cu). A 30 kDa Ni/Zn-binding polypeptide was found to be markedly decreased in the livers of the tx mice. This protein was isolated from normal adult mice using a procedure based on Ni-chelation chromatography. The amino acid sequences of two CNBr peptides were identical with portions of the mouse skeletal muscle carbonic anhydrase III (CAIII) sequence. Two other peptides sequenced had closely related sequences to that of CAIII, but with two differences in 45 amino acids. These two peptides may be derived from a novel CAIII isoform, which we term CAIIIB to distinguish it from the published form, CAIIIA. We isolated a cDNA clone corresponding to CAIIIA and used this to show that CAIIIA mRNA was also decreased in the mutant liver, but not in muscle. Copper loading of normal mice also decreased hepatic CAIIIA mRNA, suggesting that the decrease in CAIII mRNA in the tx mouse liver is a secondary consequence of the high copper levels in the liver.

Full Text

The Full Text of this article is available as a PDF (326.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alda J. O., Garay R. Chloride (or bicarbonate)-dependent copper uptake through the anion exchanger in human red blood cells. Am J Physiol. 1990 Oct;259(4 Pt 1):C570–C576. doi: 10.1152/ajpcell.1990.259.4.C570. [DOI] [PubMed] [Google Scholar]
  2. Biempica L., Rauch H., Quintana N., Sternlieb I. Morphologic and chemical studies on a murine mutation (toxic milk mice) resulting in hepatic copper toxicosis. Lab Invest. 1988 Oct;59(4):500–508. [PubMed] [Google Scholar]
  3. Bull P. C., Thomas G. R., Rommens J. M., Forbes J. R., Cox D. W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 1993 Dec;5(4):327–337. doi: 10.1038/ng1293-327. [DOI] [PubMed] [Google Scholar]
  4. Chelly J., Tümer Z., Tønnesen T., Petterson A., Ishikawa-Brush Y., Tommerup N., Horn N., Monaco A. P. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet. 1993 Jan;3(1):14–19. doi: 10.1038/ng0193-14. [DOI] [PubMed] [Google Scholar]
  5. Durnam D. M., Palmiter R. D. Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J Biol Chem. 1981 Jun 10;256(11):5712–5716. [PubMed] [Google Scholar]
  6. Durnam D. M., Perrin F., Gannon F., Palmiter R. D. Isolation and characterization of the mouse metallothionein-I gene. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6511–6515. doi: 10.1073/pnas.77.11.6511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Howell J. M., Mercer J. F. The pathology and trace element status of the toxic milk mutant mouse. J Comp Pathol. 1994 Jan;110(1):37–47. doi: 10.1016/s0021-9975(08)80268-x. [DOI] [PubMed] [Google Scholar]
  8. Jeffery S., Edwards Y., Carter N. Distribution of CAIII in fetal and adult human tissue. Biochem Genet. 1980 Oct;18(9-10):843–849. doi: 10.1007/BF00500117. [DOI] [PubMed] [Google Scholar]
  9. Koropatnick J., Cherian M. G. A mutant mouse (tx) with increased hepatic metallothionein stability and accumulation. Biochem J. 1993 Dec 1;296(Pt 2):443–449. doi: 10.1042/bj2960443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Margolis S. A., Fatiadi A. J., Alexander L., Edwards J. J. Chromatographic separations of serum proteins on immobilized metal ion stationary phases. Anal Biochem. 1989 Nov 15;183(1):108–121. doi: 10.1016/0003-2697(89)90178-4. [DOI] [PubMed] [Google Scholar]
  11. Mercer J. F., Grimes A., Rauch H. Hepatic metallothionein gene expression in toxic milk mice. J Nutr. 1992 Jun;122(6):1254–1259. doi: 10.1093/jn/122.6.1254. [DOI] [PubMed] [Google Scholar]
  12. Mercer J. F., Livingston J., Hall B., Paynter J. A., Begy C., Chandrasekharappa S., Lockhart P., Grimes A., Bhave M., Siemieniak D. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet. 1993 Jan;3(1):20–25. doi: 10.1038/ng0193-20. [DOI] [PubMed] [Google Scholar]
  13. Mercer J. F., Paynter J. A., Grimes A. The toxic milk mouse does have elevated hepatic metallothionein mRNA. Biochem J. 1994 Nov 15;304(Pt 1):317–318. doi: 10.1042/bj3040317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paynter J. A., Camakaris J., Mercer J. F. Analysis of hepatic copper, zinc, metallothionein and metallothionein-Ia mRNA in developing sheep. Eur J Biochem. 1990 May 31;190(1):149–154. doi: 10.1111/j.1432-1033.1990.tb15558.x. [DOI] [PubMed] [Google Scholar]
  15. Piechaczyk M., Blanchard J. M., Marty L., Dani C., Panabieres F., El Sabouty S., Fort P., Jeanteur P. Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat tissues. Nucleic Acids Res. 1984 Sep 25;12(18):6951–6963. doi: 10.1093/nar/12.18.6951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ploug M., Jensen A. L., Barkholt V. Determination of amino acid compositions and NH2-terminal sequences of peptides electroblotted onto PVDF membranes from tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis: application to peptide mapping of human complement component C3. Anal Biochem. 1989 Aug 15;181(1):33–39. doi: 10.1016/0003-2697(89)90390-4. [DOI] [PubMed] [Google Scholar]
  17. Rauch H. Toxic milk, a new mutation affecting cooper metabolism in the mouse. J Hered. 1983 May-Jun;74(3):141–144. doi: 10.1093/oxfordjournals.jhered.a109751. [DOI] [PubMed] [Google Scholar]
  18. Schilsky M. L., Stockert R. J., Sternlieb I. Pleiotropic effect of LEC mutation: a rodent model of Wilson's disease. Am J Physiol. 1994 May;266(5 Pt 1):G907–G913. doi: 10.1152/ajpgi.1994.266.5.G907. [DOI] [PubMed] [Google Scholar]
  19. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  20. Scott P. G., Telser A. G., Veis A. Semiquantitative determination of cyanogen bromide peptides of collagen in SDS-polyacrylamide gels. Anal Biochem. 1976 Jan;70(1):251–257. doi: 10.1016/s0003-2697(76)80065-6. [DOI] [PubMed] [Google Scholar]
  21. Tanzi R. E., Petrukhin K., Chernov I., Pellequer J. L., Wasco W., Ross B., Romano D. M., Parano E., Pavone L., Brzustowicz L. M. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet. 1993 Dec;5(4):344–350. doi: 10.1038/ng1293-344. [DOI] [PubMed] [Google Scholar]
  22. Tashian R. E. Genetics of the mammalian carbonic anhydrases. Adv Genet. 1992;30:321–356. doi: 10.1016/s0065-2660(08)60323-5. [DOI] [PubMed] [Google Scholar]
  23. Tashian R. E., Venta P. J., Nicewander P. H., Hewett-Emmett D. Evolution, structure, and expression of the carbonic anhydrase multigene family. Prog Clin Biol Res. 1990;344:159–175. [PubMed] [Google Scholar]
  24. Theophilos M. B., Cox D. W., Mercer J. F. The toxic milk mouse is a murine model of Wilson disease. Hum Mol Genet. 1996 Oct;5(10):1619–1624. doi: 10.1093/hmg/5.10.1619. [DOI] [PubMed] [Google Scholar]
  25. Torrubia J. O., Garay R. Evidence for a major route for zinc uptake in human red blood cells: [Zn(HCO3)2Cl]- influx through the [Cl-/HCO3-] anion exchanger. J Cell Physiol. 1989 Feb;138(2):316–322. doi: 10.1002/jcp.1041380214. [DOI] [PubMed] [Google Scholar]
  26. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tweedie S., Edwards Y. Mouse carbonic anhydrase III: nucleotide sequence and expression studies. Biochem Genet. 1989 Feb;27(1-2):17–30. doi: 10.1007/BF00563015. [DOI] [PubMed] [Google Scholar]
  28. Vulpe C., Levinson B., Whitney S., Packman S., Gitschier J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet. 1993 Jan;3(1):7–13. doi: 10.1038/ng0193-7. [DOI] [PubMed] [Google Scholar]
  29. Wake S. A., Mercer J. F. Induction of metallothionein mRNA in rat liver and kidney after copper chloride injection. Biochem J. 1985 Jun 1;228(2):425–432. doi: 10.1042/bj2280425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wu J., Forbes J. R., Chen H. S., Cox D. W. The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nat Genet. 1994 Aug;7(4):541–545. doi: 10.1038/ng0894-541. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES