Abstract
Substrates containing a P3 aspartic residue are in general cleaved poorly by thrombin. This may be partly due to an unfavourable interaction between the P3 aspartate and Glu192 in the active site of thrombin. In Protein C activation and perhaps also thrombin receptor cleavage, binding of ligands at the anion-binding exosite of thrombin seems to improve the activity of thrombin with substrates containing a P3 aspartate. To investigate the importance of Glu192 and exosite-binding in modulating thrombin's interactions with a P3 aspartate, peptidyl chloromethanes based on the sequence of the thrombin receptor (containing a P3 aspartate) have been synthesized and the kinetics of their inactivation of alpha-thrombin and the mutant Glu192-->Gln determined. The values of the inactivation rate constant (ki) for the chloromethanes containing a P3 aspartate were about two-fold higher with the Glu192-->Gln mutant. A peptide based on the sequence of hirudin (rhir52 65), which binds to the anion-binding exosite of thrombin, was an allosteric modulator of the amidolytic activity of the Glu192-->Gln mutant; a 5-fold decrease in the K(m) value for the substrate D-Phe-pipecolyl-Arg-p-nitroanilide was observed in the presence of saturating concentrations of rhir52-65. This exosite-binding peptide also increased the ki values of chloromethanes containing a P3 aspartate with both alpha-thrombin and the Glu192-->Gln mutant. However, the increases in the ki values were greater with the Glu192-->Gln mutant (5-fold compared with 2-fold for alpha-thrombin). Thus exosite binding does not seem to mitigate putative unfavourable interactions between Glu192 and the P3 aspartate. Moreover, increases in the ki caused by exosite binding were not unique to chloromethanes containing a P3 aspartate; increases of the same magnitude were also observed when the P3 position was occupied by the favourable D-phenylalanine in place of the unfavourable aspartate. The results obtained were consistent with exosite binding's causing changes in the conformation of the S2 and/or S1 site of thrombin.
Full Text
The Full Text of this article is available as a PDF (337.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angliker H., Shaw E., Stone S. R. Synthesis of oligopeptide chloromethanes to investigate extended binding regions of proteinases: application to the interaction of fibrinogen with thrombin. Biochem J. 1993 May 15;292(Pt 1):261–266. doi: 10.1042/bj2920261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bode W., Mayr I., Baumann U., Huber R., Stone S. R., Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475. doi: 10.1002/j.1460-2075.1989.tb08511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bode W., Turk D., Karshikov A. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci. 1992 Apr;1(4):426–471. doi: 10.1002/pro.5560010402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis S., Wallace A., Hofsteenge J., Stone S. R. Use of fragments of hirudin to investigate thrombin-hirudin interaction. Eur J Biochem. 1990 Feb 22;188(1):61–66. doi: 10.1111/j.1432-1033.1990.tb15371.x. [DOI] [PubMed] [Google Scholar]
- Ehrlich H. J., Grinnell B. W., Jaskunas S. R., Esmon C. T., Yan S. B., Bang N. U. Recombinant human protein C derivatives: altered response to calcium resulting in enhanced activation by thrombin. EMBO J. 1990 Aug;9(8):2367–2373. doi: 10.1002/j.1460-2075.1990.tb07411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofsteenge J., Taguchi H., Stone S. R. Effect of thrombomodulin on the kinetics of the interaction of thrombin with substrates and inhibitors. Biochem J. 1986 Jul 1;237(1):243–251. doi: 10.1042/bj2370243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hortin G. L., Trimpe B. L. Allosteric changes in thrombin's activity produced by peptides corresponding to segments of natural inhibitors and substrates. J Biol Chem. 1991 Apr 15;266(11):6866–6871. [PubMed] [Google Scholar]
- Ishii K., Gerszten R., Zheng Y. W., Welsh J. B., Turck C. W., Coughlin S. R. Determinants of thrombin receptor cleavage. Receptor domains involved, specificity, and role of the P3 aspartate. J Biol Chem. 1995 Jul 7;270(27):16435–16440. doi: 10.1074/jbc.270.27.16435. [DOI] [PubMed] [Google Scholar]
- Kettner C., Shaw E. Inactivation of trypsin-like enzymes with peptides of arginine chloromethyl ketone. Methods Enzymol. 1981;80(Pt 100):826–842. doi: 10.1016/s0076-6879(81)80065-1. [DOI] [PubMed] [Google Scholar]
- Le Bonniec B. F., Esmon C. T. Glu-192----Gln substitution in thrombin mimics the catalytic switch induced by thrombomodulin. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7371–7375. doi: 10.1073/pnas.88.16.7371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Bonniec B. F., Guinto E. R., Esmon C. T. The role of calcium ions in factor X activation by thrombin E192Q. J Biol Chem. 1992 Apr 5;267(10):6970–6976. [PubMed] [Google Scholar]
- Le Bonniec B. F., Guinto E. R., Stone S. R. Identification of thrombin residues that modulate its interactions with antithrombin III and alpha 1-antitrypsin. Biochemistry. 1995 Sep 26;34(38):12241–12248. doi: 10.1021/bi00038a019. [DOI] [PubMed] [Google Scholar]
- Le Bonniec B. F., Myles T., Johnson T., Knight C. G., Tapparelli C., Stone S. R. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis. Biochemistry. 1996 Jun 4;35(22):7114–7122. doi: 10.1021/bi952701s. [DOI] [PubMed] [Google Scholar]
- Liu L. W., Vu T. K., Esmon C. T., Coughlin S. R. The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity. J Biol Chem. 1991 Sep 15;266(26):16977–16980. [PubMed] [Google Scholar]
- Lottenberg R., Jackson C. M. Solution composition dependent variation in extinction coefficients for p-nitroaniline. Biochim Biophys Acta. 1983 Feb 15;742(3):558–564. doi: 10.1016/0167-4838(83)90273-x. [DOI] [PubMed] [Google Scholar]
- Mathews I. I., Padmanabhan K. P., Ganesh V., Tulinsky A., Ishii M., Chen J., Turck C. W., Coughlin S. R., Fenton J. W., 2nd Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. Biochemistry. 1994 Mar 22;33(11):3266–3279. doi: 10.1021/bi00177a018. [DOI] [PubMed] [Google Scholar]
- Naski M. C., Fenton J. W., 2nd, Maraganore J. M., Olson S. T., Shafer J. A. The COOH-terminal domain of hirudin. An exosite-directed competitive inhibitor of the action of alpha-thrombin on fibrinogen. J Biol Chem. 1990 Aug 15;265(23):13484–13489. [PubMed] [Google Scholar]
- Ni F., Ripoll D. R., Martin P. D., Edwards B. F. Solution structure of a platelet receptor peptide bound to bovine alpha-thrombin. Biochemistry. 1992 Nov 24;31(46):11551–11557. doi: 10.1021/bi00161a037. [DOI] [PubMed] [Google Scholar]
- Richardson M. A., Gerlitz B., Grinnell B. W. Enhancing protein C interaction with thrombin results in a clot-activated anticoagulant. Nature. 1992 Nov 19;360(6401):261–264. doi: 10.1038/360261a0. [DOI] [PubMed] [Google Scholar]
- Skrzypczak-Jankun E., Carperos V. E., Ravichandran K. G., Tulinsky A., Westbrook M., Maraganore J. M. Structure of the hirugen and hirulog 1 complexes of alpha-thrombin. J Mol Biol. 1991 Oct 20;221(4):1379–1393. [PubMed] [Google Scholar]
- Stone S. R., Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry. 1986 Aug 12;25(16):4622–4628. doi: 10.1021/bi00364a025. [DOI] [PubMed] [Google Scholar]
- Stubbs M. T., Bode W. The clot thickens: clues provided by thrombin structure. Trends Biochem Sci. 1995 Jan;20(1):23–28. doi: 10.1016/s0968-0004(00)88945-8. [DOI] [PubMed] [Google Scholar]
- Vu T. K., Wheaton V. I., Hung D. T., Charo I., Coughlin S. R. Domains specifying thrombin-receptor interaction. Nature. 1991 Oct 17;353(6345):674–677. doi: 10.1038/353674a0. [DOI] [PubMed] [Google Scholar]
- Ye J., Esmon N. L., Esmon C. T., Johnson A. E. The active site of thrombin is altered upon binding to thrombomodulin. Two distinct structural changes are detected by fluorescence, but only one correlates with protein C activation. J Biol Chem. 1991 Dec 5;266(34):23016–23021. [PubMed] [Google Scholar]
- de Cristofaro R., Rocca B., Bizzi B., Landolfi R. The linkage between binding of the C-terminal domain of hirudin and amidase activity in human alpha-thrombin. Biochem J. 1993 Jan 15;289(Pt 2):475–480. doi: 10.1042/bj2890475. [DOI] [PMC free article] [PubMed] [Google Scholar]