Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jan 15;321(Pt 2):375–381. doi: 10.1042/bj3210375

The beta-D-xylosidase of Trichoderma reesei is a multifunctional beta-D-xylan xylohydrolase.

M C Herrmann 1, M Vrsanska 1, M Jurickova 1, J Hirsch 1, P Biely 1, C P Kubicek 1
PMCID: PMC1218079  PMID: 9020869

Abstract

An extracellular multifunctional beta-D-xylan xylohydrolase, previously described as beta-xylosidase, was purified from Trichoderma reesei RUT C-30 to physical homogeneity. The active enzyme was a 100 (+/-5) kDa glycosylated monomer that exhibited a pl of 4.7. Its activity was optimal at pH 4 and it was stable between pH 3 and 6. Its temperature-stability was moderate (70 degrees zero of activity remaining after 60 min at 50 degrees C) and optimal activity was observed at 60 degrees C. It is capable of hydrolysing beta-1.4-xylo-oligosaccharides [degree of polymerization (DP) 2-7], the apparent Vmax increasing with increasing chain length. The enzyme also attacked debranched beech-wood (Lenzing) xylan and 4-O-methylglucuronoxylan, forming xylose as the only end product. The K(m) for xylan was 0.7 g/l. For this reason we consider the enzyme to be a beta-D-xylan xylohydrolase. The enzyme also exhibits alpha-L-arabinofuranosidase activity on 4-nitrophenyl alpha-L-arabinofuranoside, and evidence is presented that this is not caused by an impurity in the enzyme preparation. The beta-D-xylan xylohydrolase exhibits glycosyltransferase activity with xylo-oligosaccharides and at high concentrations of 4-nitrophenyl beta-D-xylopyranoside (4-Nph-beta-Xyl). The enzyme hydrolyses beta-1, 4-linkages preferentially to beta-1,3-linkages, and beta-1,2-linked xylo-oligosaccharides are not hydrolysed at all. The enzyme liberates terminal beta-1,4-xylopyranose residues linked to a 2-O-substituted xylopyranose residue, but not that linked to a 3-O-substituted xylopyranose residue. The enzyme does not attack methyl, methyl 1-thio-benzyl or butyl l-thio-beta-D-xylopyranosides and 4-naphthyl, 2-naphthyl and phenyl beta-D-xylopyranosides.

Full Text

The Full Text of this article is available as a PDF (389.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biely P., Kremnický L., Alföldi J., Tenkanen M. Stereochemistry of the hydrolysis of glycosidic linkage by endo-beta-1,4-xylanases of Trichoderma reesei. FEBS Lett. 1994 Dec 12;356(1):137–140. doi: 10.1016/0014-5793(94)01248-2. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Deleyn F., Claeyssens M., De Bruyne C. K. beta-D-xylosidase from Penicillium wortmanni. Methods Enzymol. 1982;83:639–644. doi: 10.1016/0076-6879(82)83063-2. [DOI] [PubMed] [Google Scholar]
  4. Gasparic A., Marinsek-Logar R., Martin J., Wallace R. J., Nekrep F. V., Flint H. J. Isolation of genes encoding beta-D-xylanase, beta-D-xylosidase and alpha-L-arabinofuranosidase activities from the rumen bacterium Prevotella ruminicola B1(4). FEMS Microbiol Lett. 1995 Jan 15;125(2-3):135–141. doi: 10.1111/j.1574-6968.1995.tb07349.x. [DOI] [PubMed] [Google Scholar]
  5. Kersters-Hilderson H., Loontiens F. G., Claeyssens M., De Bruyne C. K. Partial purification and properties of an induced beta-D-xylosidase of Bacillus pumilus 12. Eur J Biochem. 1969 Jan;7(3):434–441. doi: 10.1111/j.1432-1033.1969.tb19628.x. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Lee S. F., Forsberg C. W. Isolation and Some Properties of a beta-d-Xylosidase from Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol. 1987 Apr;53(4):651–654. doi: 10.1128/aem.53.4.651-654.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Margolles-Clark E., Tenkanen M., Nakari-Setälä T., Penttilä M. Cloning of genes encoding alpha-L-arabinofuranosidase and beta-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol. 1996 Oct;62(10):3840–3846. doi: 10.1128/aem.62.10.3840-3846.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  10. Nanmori T., Watanabe T., Shinke R., Kohno A., Kawamura Y. Purification and properties of thermostable xylanase and beta-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J Bacteriol. 1990 Dec;172(12):6669–6672. doi: 10.1128/jb.172.12.6669-6672.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rodionova N. A., Tavobilov I. M., Bezborodov A. M. beta-Xylosidase from Aspergillus niger 15: purification and properties. J Appl Biochem. 1983 Aug-Oct;5(4-5):300–312. [PubMed] [Google Scholar]
  12. Saarelainen R., Paloheimo M., Fagerström R., Suominen P. L., Nevalainen K. M. Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI 9) gene xln2. Mol Gen Genet. 1993 Dec;241(5-6):497–503. doi: 10.1007/BF00279891. [DOI] [PubMed] [Google Scholar]
  13. Shao W., Wiegel J. Purification and characterization of a thermostable beta-xylosidase from Thermoanaerobacter ethanolicus. J Bacteriol. 1992 Sep;174(18):5848–5853. doi: 10.1128/jb.174.18.5848-5853.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shao W., Wiegel J. Purification and characterization of a thermostable beta-xylosidase from Thermoanaerobacter ethanolicus. J Bacteriol. 1992 Sep;174(18):5848–5853. doi: 10.1128/jb.174.18.5848-5853.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sternberg D., Mandels G. R. Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol. 1979 Sep;139(3):761–769. doi: 10.1128/jb.139.3.761-769.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Törrönen A., Harkki A., Rouvinen J. Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J. 1994 Jun 1;13(11):2493–2501. doi: 10.1002/j.1460-2075.1994.tb06536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Törrönen A., Mach R. L., Messner R., Gonzalez R., Kalkkinen N., Harkki A., Kubicek C. P. The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology (N Y) 1992 Nov;10(11):1461–1465. doi: 10.1038/nbt1192-1461. [DOI] [PubMed] [Google Scholar]
  19. Törrönen A., Rouvinen J. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry. 1995 Jan 24;34(3):847–856. doi: 10.1021/bi00003a019. [DOI] [PubMed] [Google Scholar]
  20. Utt E. A., Eddy C. K., Keshav K. F., Ingram L. O. Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with beta-D-xylosidase and alpha-L-arabinofuranosidase activities. Appl Environ Microbiol. 1991 Apr;57(4):1227–1234. doi: 10.1128/aem.57.4.1227-1234.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES