Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jan 15;321(Pt 2):431–437. doi: 10.1042/bj3210431

P52PAI-1 gene expression in butyrate-induced flat revertants of v-ras-transformed rat kidney cells: mechanism of induction and involvement in the morphological response.

P J Higgins 1, M P Ryan 1, D M Jelley 1
PMCID: PMC1218087  PMID: 9020877

Abstract

Sodium n-butyrate-induced flat reversion in v-K-ras oncogene-transformed rat kidney (KNRK) cells is associated with transcriptional activation of the p52PAI-1 gene (which encodes the type-1 inhibitor of plasminogen activator). Butyrate-initiated expression of p52PAI-1 mRNA and protein correlated with induced cell spreading and preceded development of cell-to-substrate focal adhesions. Such undersurface matrix contact structures, which are absent from parental KNRK cells, require proximal PAI-1 deposition for their stabilization. Stimulated p52PAI-1 expression by flat revertants (approximating 25-fold that of control cells) and the accompanying cytoarchitectural reorganization appeared to be programmed responses to butyrate as both events required de novo RNA and protein synthesis, metabolic characteristics consistent with a secondary pathway of gene regulation. To assess the relevance of p52PAI-1 induction to the process of flat reversion more critically, a molecular genetic approach was designed to maintain high-level constitutive p52PAI-1 synthesis in the absence of butyrate. KNRK cells transfected with a Rc/CMVPAI plasmid construct, in which expression of a p52PAI-1 cDNA insert was driven by enhancer-promoter sequences from the immediate-early gene of human cytomegalovirus, formed colonies comprised of flat-revertant-like cells with a greater frequency than did cells transfected with the Rc/CMV vector alone (24.8% and 1.7% respectively). Comparative analysis of randomly selected Rc/ CMVPAI clones indicated that a 10-fold increase in immunoreactive p52PAI-1 protein, relative to Rc/CMV isolates, correlated with generation of the flat phenotype. These data suggest that induced p52PAI-1 expression probably functions in the development of morphological revertants in the KNRK cell system.

Full Text

The Full Text of this article is available as a PDF (433.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreasen P. A., Pyke C., Riccio A., Kristensen P., Nielsen L. S., Lund L. R., Blasi F., Danø K. Plasminogen activator inhibitor type 1 biosynthesis and mRNA level are increased by dexamethasone in human fibrosarcoma cells. Mol Cell Biol. 1987 Aug;7(8):3021–3025. doi: 10.1128/mcb.7.8.3021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axelrod J. H., Reich R., Miskin R. Expression of human recombinant plasminogen activators enhances invasion and experimental metastasis of H-ras-transformed NIH 3T3 cells. Mol Cell Biol. 1989 May;9(5):2133–2141. doi: 10.1128/mcb.9.5.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banyard M. R., Medveczyk C. J., Tellam R. L. Microfilament organization correlates with increased cellular content of gelsolin. Exp Cell Res. 1990 Mar;187(1):180–183. doi: 10.1016/0014-4827(90)90135-w. [DOI] [PubMed] [Google Scholar]
  4. Blasi F., Vassalli J. D., Danø K. Urokinase-type plasminogen activator: proenzyme, receptor, and inhibitors. J Cell Biol. 1987 Apr;104(4):801–804. doi: 10.1083/jcb.104.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cajot J. F., Schleuning W. D., Medcalf R. L., Bamat J., Testuz J., Liebermann L., Sordat B. Mouse L cells expressing human prourokinase-type plasminogen activator: effects on extracellular matrix degradation and invasion. J Cell Biol. 1989 Aug;109(2):915–925. doi: 10.1083/jcb.109.2.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ciambrone G. J., McKeown-Longo P. J. Plasminogen activator inhibitor type I stabilizes vitronectin-dependent adhesions in HT-1080 cells. J Cell Biol. 1990 Nov;111(5 Pt 1):2183–2195. doi: 10.1083/jcb.111.5.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen R. L., Niclas J., Lee W. M., Wun T. C., Crowley C. W., Levinson A. D., Sadler J. E., Shuman M. A. Effects of cellular transformation on expression of plasminogen activator inhibitors 1 and 2. Evidence for independent regulation. J Biol Chem. 1989 May 15;264(14):8375–8383. [PubMed] [Google Scholar]
  8. Danø K., Andreasen P. A., Grøndahl-Hansen J., Kristensen P., Nielsen L. S., Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985;44:139–266. doi: 10.1016/s0065-230x(08)60028-7. [DOI] [PubMed] [Google Scholar]
  9. Egan S. E., Wright J. A., Jarolim L., Yanagihara K., Bassin R. H., Greenberg A. H. Transformation by oncogenes encoding protein kinases induces the metastatic phenotype. Science. 1987 Oct 9;238(4824):202–205. doi: 10.1126/science.3659911. [DOI] [PubMed] [Google Scholar]
  10. Fujita H., Suzuki H., Kuzumaki N., Müllauer L., Ogiso Y., Oda A., Ebisawa K., Sakurai T., Nonomura Y., Kijimoto-Ochiai S. A specific protein, p92, detected in flat revertants derived from NIH/3T3 transformed by human activated c-Ha-ras oncogene. Exp Cell Res. 1990 Jan;186(1):115–121. doi: 10.1016/0014-4827(90)90217-x. [DOI] [PubMed] [Google Scholar]
  11. Hayman E. G., Engvall E., Ruoslahti E. Concomitant loss of cell surface fibronectin and laminin from transformed rat kidney cells. J Cell Biol. 1981 Feb;88(2):352–357. doi: 10.1083/jcb.88.2.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Higgins P. J., Chaudhari P., Ryan M. P. Cell-shape regulation and matrix protein p52 content in phenotypic variants of ras-transformed rat kidney fibroblasts. Functional analysis and biochemical comparison of p52 with proteins implicated in cell-shape determination. Biochem J. 1991 Feb 1;273(Pt 3):651–658. doi: 10.1042/bj2730651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Higgins P. J., Ryan M. P. Biochemical localization of the transformation-sensitive 52 kDa (p52) protein to the substratum contact regions of cultured rat fibroblasts. Butyrate induction, characterization, and quantification of p52 in v-ras transformed cells. Biochem J. 1989 Jan 1;257(1):173–182. doi: 10.1042/bj2570173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Higgins P. J., Ryan M. P. Identification of the 52 kDa cytoskeletal-like protein of cytochalasin D-stimulated normal rat kidney (NRK/CD) cells as substrate-associated glycoprotein p52 [plasminogen-activator inhibitor type-1 (PAI-1)]. Expression of p52 (PAI-1) in NRK/CD cells is regulated at the level of mRNA abundance. Biochem J. 1992 Jun 1;284(Pt 2):433–439. doi: 10.1042/bj2840433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Higgins P. J., Ryan M. P., Providence K. M. Induced expression of p52(PAI-1) in normal rat kidney cells by the microfilament-disrupting agent cytochalasin D. J Cell Physiol. 1994 Apr;159(1):187–195. doi: 10.1002/jcp.1041590123. [DOI] [PubMed] [Google Scholar]
  16. Higgins P. J., Ryan M. P., Zeheb R., Gelehrter T. D., Chaudhari P. p52 induction by cytochalasin D in rat kidney fibroblasts: homologies between p52 and plasminogen activator inhibitor type-1. J Cell Physiol. 1990 May;143(2):321–329. doi: 10.1002/jcp.1041430216. [DOI] [PubMed] [Google Scholar]
  17. Higgins P. J., Ryan M. P. p52(PAI-1) and actin expression in butyrate-induced flat revertants of v-ras-transformed rat kidney cells. Biochem J. 1991 Nov 1;279(Pt 3):883–890. doi: 10.1042/bj2790883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Higgins P. J., Staiano-Coico L., Ryan M. P. Cell-shape-dependent modulation of p52(PAI-1) gene expression involves a secondary response pathway. Biochem J. 1995 Mar 1;306(Pt 2):497–504. doi: 10.1042/bj3060497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Izzard C. S., Lochner L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci. 1976 Jun;21(1):129–159. doi: 10.1242/jcs.21.1.129. [DOI] [PubMed] [Google Scholar]
  20. Knudsen B. S., Nachman R. L. Matrix plasminogen activator inhibitor. Modulation of the extracellular proteolytic environment. J Biol Chem. 1988 Jul 5;263(19):9476–9481. [PubMed] [Google Scholar]
  21. Laiho M., Keski-Oja J. Growth factors in the regulation of pericellular proteolysis: a review. Cancer Res. 1989 May 15;49(10):2533–2553. [PubMed] [Google Scholar]
  22. Laiho M., Saksela O., Keski-Oja J. Transforming growth factor-beta induction of type-1 plasminogen activator inhibitor. Pericellular deposition and sensitivity to exogenous urokinase. J Biol Chem. 1987 Dec 25;262(36):17467–17474. [PubMed] [Google Scholar]
  23. Leavitt J., Kakunaga T. Expression of a variant form of actin and additional polypeptide changes following chemical-induced in vitro neoplastic transformation of human fibroblasts. J Biol Chem. 1980 Feb 25;255(4):1650–1661. [PubMed] [Google Scholar]
  24. Matsumura F., Lin J. J., Yamashiro-Matsumura S., Thomas G. P., Topp W. C. Differential expression of tropomyosin forms in the microfilaments isolated from normal and transformed rat cultured cells. J Biol Chem. 1983 Nov 25;258(22):13954–13964. [PubMed] [Google Scholar]
  25. Plantefaber L. C., Hynes R. O. Changes in integrin receptors on oncogenically transformed cells. Cell. 1989 Jan 27;56(2):281–290. doi: 10.1016/0092-8674(89)90902-1. [DOI] [PubMed] [Google Scholar]
  26. Pöllänen J., Hedman K., Nielsen L. S., Danø K., Vaheri A. Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts. J Cell Biol. 1988 Jan;106(1):87–95. doi: 10.1083/jcb.106.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pöllänen J., Saksela O., Salonen E. M., Andreasen P., Nielsen L., Danø K., Vaheri A. Distinct localizations of urokinase-type plasminogen activator and its type 1 inhibitor under cultured human fibroblasts and sarcoma cells. J Cell Biol. 1987 Apr;104(4):1085–1096. doi: 10.1083/jcb.104.4.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pöllänen J., Stephens R. W., Vaheri A. Directed plasminogen activation at the surface of normal and malignant cells. Adv Cancer Res. 1991;57:273–328. doi: 10.1016/s0065-230x(08)61002-7. [DOI] [PubMed] [Google Scholar]
  29. Quigley J. P. Phorbol ester-induced morphological changes in transformed chick fibroblasts: evidence for direct catalytic involvement of plasminogen activator. Cell. 1979 May;17(1):131–141. doi: 10.1016/0092-8674(79)90301-5. [DOI] [PubMed] [Google Scholar]
  30. Ryan M. P., Higgins P. J. Control of p52(PAI-1) gene expression in normal and transformed rat kidney cells: relationship between p52(PAI-1) induction and actin cytoarchitecture. Adv Exp Med Biol. 1994;358:215–230. doi: 10.1007/978-1-4615-2578-3_20. [DOI] [PubMed] [Google Scholar]
  31. Ryan M. P., Higgins P. J. Cytoarchitecture of Kirsten sarcoma virus-transformed rat kidney fibroblasts: butyrate-induced reorganization within the actin microfilament network. J Cell Physiol. 1988 Oct;137(1):25–34. doi: 10.1002/jcp.1041370104. [DOI] [PubMed] [Google Scholar]
  32. Ryan M. P., Higgins P. J. Growth state-regulated expression of p52(PAI-1) in normal rat kidney cells. J Cell Physiol. 1993 May;155(2):376–384. doi: 10.1002/jcp.1041550219. [DOI] [PubMed] [Google Scholar]
  33. Ryan M. P., Higgins P. J. Sodium-n-butyrate induces secretion and substrate accumulation of p52 in Kirsten sarcoma virus-transformed rat kidney fibroblasts. Int J Biochem. 1989;21(1):31–37. doi: 10.1016/0020-711x(89)90024-4. [DOI] [PubMed] [Google Scholar]
  34. Sistonen L., Keski-Oja J., Ulmanen I., Hölttä E., Wikgren B. J., Alitalo K. Dose effects of transfected c-Ha-rasVal 12 oncogene in transformed cell clones. Exp Cell Res. 1987 Feb;168(2):518–530. doi: 10.1016/0014-4827(87)90024-3. [DOI] [PubMed] [Google Scholar]
  35. Soff G. A., Sanderowitz J., Gately S., Verrusio E., Weiss I., Brem S., Kwaan H. C. Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J Clin Invest. 1995 Dec;96(6):2593–2600. doi: 10.1172/JCI118323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sullivan L. M., Quigley J. P. An anticatalytic monoclonal antibody to avian plasminogen activator: its effect on behavior of RSV-transformed chick fibroblasts. Cell. 1986 Jun 20;45(6):905–915. doi: 10.1016/0092-8674(86)90565-9. [DOI] [PubMed] [Google Scholar]
  37. Yamada H., Omata-Yamada T., Wakabayashi-Ito N., Carter S. G., Lengyel P. Isolation of recessive (mediator-) revertants from NIH 3T3 cells transformed with a c-H-ras oncogene. Mol Cell Biol. 1990 Apr;10(4):1822–1827. doi: 10.1128/mcb.10.4.1822. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES