Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jan 15;321(Pt 2):457–464. doi: 10.1042/bj3210457

Characterization of a partially structured state in an all-beta-sheet protein.

T Sivaraman 1, T K Kumar 1, G Jayaraman 1, C C Han 1, C Yu 1
PMCID: PMC1218091  PMID: 9020881

Abstract

Cardiotoxin analogue III (CTX III) is a low-molecular-mass all-beta-sheet protein isolated from the Taiwan cobra (Naja naja atra) venom. A stable partially structured state similar to the "molten globule' state has been identified for CTX III in a 3% (w/v) solution of 2,2,2-trichloroacetic acid at 298 K. This stable state has been structurally characterized using a variety of techniques such as CD, 1-anilinonaphthalene-8-sulphonate fluorescence binding, Fourier transform IR and two-dimensional NMR spectroscopy techniques. Direct assignment of the homonuclear two-dimensional NMR spectra of the protein in 3% trichloroacetic acid showed that drastic structural perturbation had not taken place in the protein and that the 'intermediate' state retained a significant portion of the native secondary-structural interactions. It is found that about 65% of the native beta-sheet structural contacts are maintained in the partially structured state of CTX III in 3% trichloroacetic acid.

Full Text

The Full Text of this article is available as a PDF (555.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  2. Baldwin R. L. The nature of protein folding pathways: the classical versus the new view. J Biomol NMR. 1995 Feb;5(2):103–109. doi: 10.1007/BF00208801. [DOI] [PubMed] [Google Scholar]
  3. Barrick D., Baldwin R. L. Stein and Moore Award address. The molten globule intermediate of apomyoglobin and the process of protein folding. Protein Sci. 1993 Jun;2(6):869–876. doi: 10.1002/pro.5560020601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhaskaran R., Huang C. C., Chang D. K., Yu C. Cardiotoxin III from the Taiwan cobra (Naja naja atra). Determination of structure in solution and comparison with short neurotoxins. J Mol Biol. 1994 Jan 28;235(4):1291–1301. doi: 10.1006/jmbi.1994.1082. [DOI] [PubMed] [Google Scholar]
  5. Buck M., Radford S. E., Dobson C. M. A partially folded state of hen egg white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry. 1993 Jan 19;32(2):669–678. doi: 10.1021/bi00053a036. [DOI] [PubMed] [Google Scholar]
  6. Buck M., Schwalbe H., Dobson C. M. Characterization of conformational preferences in a partly folded protein by heteronuclear NMR spectroscopy: assignment and secondary structure analysis of hen egg-white lysozyme in trifluoroethanol. Biochemistry. 1995 Oct 10;34(40):13219–13232. doi: 10.1021/bi00040a038. [DOI] [PubMed] [Google Scholar]
  7. Bychkova V. E., Berni R., Rossi G. L., Kutyshenko V. P., Ptitsyn O. B. Retinol-binding protein is in the molten globule state at low pH. Biochemistry. 1992 Aug 25;31(33):7566–7571. doi: 10.1021/bi00148a018. [DOI] [PubMed] [Google Scholar]
  8. Bychkova V. E., Dujsekina A. E., Klenin S. I., Tiktopulo E. I., Uversky V. N., Ptitsyn O. B. Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry. 1996 May 14;35(19):6058–6063. doi: 10.1021/bi9522460. [DOI] [PubMed] [Google Scholar]
  9. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  10. Carlsson U., Jonsson B. H. Folding of beta-sheet proteins. Curr Opin Struct Biol. 1995 Aug;5(4):482–487. doi: 10.1016/0959-440x(95)80032-8. [DOI] [PubMed] [Google Scholar]
  11. Clark A. H., Saunderson D. H., Suggett A. Infrared and laser-Raman spectroscopic studies of thermally-induced globular protein gels. Int J Pept Protein Res. 1981 Mar;17(3):353–364. doi: 10.1111/j.1399-3011.1981.tb02002.x. [DOI] [PubMed] [Google Scholar]
  12. Dobson C. M., Evans P. A., Radford S. E. Understanding how proteins fold: the lysozyme story so far. Trends Biochem Sci. 1994 Jan;19(1):31–37. doi: 10.1016/0968-0004(94)90171-6. [DOI] [PubMed] [Google Scholar]
  13. Dobson C. M. Protein folding. Solid evidence for molten globules. Curr Biol. 1994 Jul 1;4(7):636–640. doi: 10.1016/s0960-9822(00)00141-x. [DOI] [PubMed] [Google Scholar]
  14. Englander S. W., Wand A. J. Main-chain-directed strategy for the assignment of 1H NMR spectra of proteins. Biochemistry. 1987 Sep 22;26(19):5953–5958. doi: 10.1021/bi00393a001. [DOI] [PubMed] [Google Scholar]
  15. Fan P., Bracken C., Baum J. Structural characterization of monellin in the alcohol-denatured state by NMR: evidence for beta-sheet to alpha-helix conversion. Biochemistry. 1993 Feb 16;32(6):1573–1582. doi: 10.1021/bi00057a023. [DOI] [PubMed] [Google Scholar]
  16. Fersht A. R. The sixth Datta Lecture. Protein folding and stability: the pathway of folding of barnase. FEBS Lett. 1993 Jun 28;325(1-2):5–16. doi: 10.1016/0014-5793(93)81405-o. [DOI] [PubMed] [Google Scholar]
  17. Goto Y., Calciano L. J., Fink A. L. Acid-induced folding of proteins. Proc Natl Acad Sci U S A. 1990 Jan;87(2):573–577. doi: 10.1073/pnas.87.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Goto Y., Nishikiori S. Role of electrostatic repulsion in the acidic molten globule of cytochrome c. J Mol Biol. 1991 Dec 5;222(3):679–686. doi: 10.1016/0022-2836(91)90504-y. [DOI] [PubMed] [Google Scholar]
  19. Goto Y., Takahashi N., Fink A. L. Mechanism of acid-induced folding of proteins. Biochemistry. 1990 Apr 10;29(14):3480–3488. doi: 10.1021/bi00466a009. [DOI] [PubMed] [Google Scholar]
  20. Harding M. M., Williams D. H., Woolfson D. N. Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin. Biochemistry. 1991 Mar 26;30(12):3120–3128. doi: 10.1021/bi00226a020. [DOI] [PubMed] [Google Scholar]
  21. Hughson F. M., Wright P. E., Baldwin R. L. Structural characterization of a partly folded apomyoglobin intermediate. Science. 1990 Sep 28;249(4976):1544–1548. doi: 10.1126/science.2218495. [DOI] [PubMed] [Google Scholar]
  22. Jagannadham M. V., Balasubramanian D. The molten globular intermediate form in the folding pathway of human carbonic anhydrase B. FEBS Lett. 1985 Sep 2;188(2):326–330. doi: 10.1016/0014-5793(85)80396-3. [DOI] [PubMed] [Google Scholar]
  23. Jeng M. F., Englander S. W. Stable submolecular folding units in a non-compact form of cytochrome c. J Mol Biol. 1991 Oct 5;221(3):1045–1061. doi: 10.1016/0022-2836(91)80191-v. [DOI] [PubMed] [Google Scholar]
  24. Jennings P. A., Wright P. E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993 Nov 5;262(5135):892–896. doi: 10.1126/science.8235610. [DOI] [PubMed] [Google Scholar]
  25. Kamatari Y. O., Konno T., Kataoka M., Akasaka K. The methanol-induced globular and expanded denatured states of cytochrome c: a study by CD fluorescence, NMR and small-angle X-ray scattering. J Mol Biol. 1996 Jun 14;259(3):512–523. doi: 10.1006/jmbi.1996.0336. [DOI] [PubMed] [Google Scholar]
  26. Kumar T. K., Jayaraman G., Lee C. S., Sivaraman T., Lin W. Y., Yu C. Identification of 'molten globule'-like state in all beta-sheet protein. Biochem Biophys Res Commun. 1995 Feb 15;207(2):536–543. doi: 10.1006/bbrc.1995.1221. [DOI] [PubMed] [Google Scholar]
  27. Kumar T. K., Lee C. S., Yu C. A case study of cardiotoxin III from the Taiwan cobra (Naja naja atra). Solution structure and other physical properties. Adv Exp Med Biol. 1996;391:115–129. doi: 10.1007/978-1-4613-0361-9_7. [DOI] [PubMed] [Google Scholar]
  28. Kumar T. K., Subbiah V., Ramakrishna T., Pandit M. W. Trichloroacetic acid-induced unfolding of bovine pancreatic ribonuclease. Existence of molten globule-like state. J Biol Chem. 1994 Apr 29;269(17):12620–12625. [PubMed] [Google Scholar]
  29. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  30. Liu Z. P., Rizo J., Gierasch L. M. Equilibrium folding studies of cellular retinoic acid binding protein, a predominantly beta-sheet protein. Biochemistry. 1994 Jan 11;33(1):134–142. doi: 10.1021/bi00167a017. [DOI] [PubMed] [Google Scholar]
  31. Miranker A., Robinson C. V., Radford S. E., Aplin R. T., Dobson C. M. Detection of transient protein folding populations by mass spectrometry. Science. 1993 Nov 5;262(5135):896–900. doi: 10.1126/science.8235611. [DOI] [PubMed] [Google Scholar]
  32. Otzen D. E., Itzhaki L. S., elMasry N. F., Jackson S. E., Fersht A. R. Structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implications for mechanisms of protein folding. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10422–10425. doi: 10.1073/pnas.91.22.10422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  34. Sagar A. J., Pandit M. W. Denaturation studies on bovine pancreatic ribonuclease. Effect of trichloroacetic acid. Biochim Biophys Acta. 1983 Mar 30;743(3):303–309. doi: 10.1016/0167-4838(83)90386-2. [DOI] [PubMed] [Google Scholar]
  35. Scholtz J. M., Baldwin R. L. Perchlorate-induced denaturation of ribonuclease A: investigation of possible folding intermediates. Biochemistry. 1993 May 4;32(17):4604–4608. doi: 10.1021/bi00068a017. [DOI] [PubMed] [Google Scholar]
  36. Sosnick T. R., Mayne L., Hiller R., Englander S. W. The barriers in protein folding. Nat Struct Biol. 1994 Mar;1(3):149–156. doi: 10.1038/nsb0394-149. [DOI] [PubMed] [Google Scholar]
  37. Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
  38. Yang C. C., King K., Sun T. P. Chemical modification of lysine and histidine residues in phospholipase A2 from the venom of Naja naja atra (Taiwan cobra). Toxicon. 1981;19(5):645–659. doi: 10.1016/0041-0101(81)90102-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES