Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jan 15;321(Pt 2):487–495. doi: 10.1042/bj3210487

Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis.

P J van den Broek 1, A E van Gompel 1, M A Luttik 1, J T Pronk 1, C C van Leeuwen 1
PMCID: PMC1218095  PMID: 9020885

Abstract

Transport of glucose and maltose was studied in plasma-membrane vesicles from Candida utilis. The yeast was grown on a mixture of glucose and maltose in aerobic carbon-limited continuous cultures which enabled transport to be studied for both sugars with the same vesicles. Vesicles were prepared by fusion of isolated plasma membranes with proteoliposomes containing bovine heart cytochrome c oxidase as a proton-motive-force-generating system. Addition of reduced cytochrome c generated a proton-motive force, consisting of a membrane potential, negative inside, and a pH gradient, alkaline inside. Energization led to accumulation of glucose and maltose in these vesicles, reaching accumulation ratios of about 40-50. Accumulation also occurred in the presence of valinomycin or nigericin, but was prevented by a combination of the two ionophores or by uncoupler, showing that glucose and maltose transport are dependent on the proton-motive force. Comparison of sugar accumulation with quantitative data on the proton-motive force indicated a 1:1 H+/sugar stoichiometry for both transport systems. Efflux of accumulated glucose was observed on dissipation of the proton-motive force. Exchange and counterflow experiments confirmed the reversible character of the H+-glucose symporter. In contrast, uncoupler or a mixture of valinomycin plus nigericin induced only a slow efflux of accumulated maltose. Moreover under counterflow conditions, the expected transient accumulation was small. Thus the H+-maltose symporter has some characteristics of a carrier that is not readily reversible. It is concluded that in C. utilis the transport systems for glucose and maltose are both driven by the proton-motive force, but the mechanisms are different.

Full Text

The Full Text of this article is available as a PDF (553.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentaboulet M., Kepes A. Counter-transport mediated by the lactose permease of Escherichia coli. Biochim Biophys Acta. 1977 Nov 15;471(1):125–134. doi: 10.1016/0005-2736(77)90400-x. [DOI] [PubMed] [Google Scholar]
  2. Calahorra M., Opekarová M., Ramirez J., Peña A. Leucine transport in plasma membrane vesicles of Saccharomyces cerevisiae. FEBS Lett. 1989 Apr 24;247(2):235–238. doi: 10.1016/0014-5793(89)81342-0. [DOI] [PubMed] [Google Scholar]
  3. Calahorra M., Ramírez J., Clemente S. M., Peña A. Electrochemical potential and ion transport in vesicles of yeast plasma membrane. Biochim Biophys Acta. 1987 May 29;899(2):229–238. doi: 10.1016/0005-2736(87)90404-4. [DOI] [PubMed] [Google Scholar]
  4. Caspari T., Will A., Opekarová M., Sauer N., Tanner W. Hexose/H+ symporters in lower and higher plants. J Exp Biol. 1994 Nov;196:483–491. doi: 10.1242/jeb.196.1.483. [DOI] [PubMed] [Google Scholar]
  5. Clement N. R., Gould J. M. Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles. Biochemistry. 1981 Mar 17;20(6):1534–1538. doi: 10.1021/bi00509a019. [DOI] [PubMed] [Google Scholar]
  6. Crabeel M., Grenson M. Regulation of histidine uptake by specific feedback inhibition of two histidine permeases in Saccharomyces cerevisiae. Eur J Biochem. 1970 May 1;14(1):197–204. doi: 10.1111/j.1432-1033.1970.tb00278.x. [DOI] [PubMed] [Google Scholar]
  7. Driessen A. J., Hellingwerf K. J., Konings W. N. Mechanism of energy coupling to entry and exit of neutral and branched chain amino acids in membrane vesicles of Streptococcus cremoris. J Biol Chem. 1987 Sep 15;262(26):12438–12443. [PubMed] [Google Scholar]
  8. Driessen A. J., Kodde J., de Jong S., Konings W. N. Neutral amino acid transport by membrane vesicles of Streptococcus cremoris is subject to regulation by internal pH. J Bacteriol. 1987 Jun;169(6):2748–2754. doi: 10.1128/jb.169.6.2748-2754.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Driessen A. J., de Vrij W., Konings W. N. Incorporation of beef heart cytochrome c oxidase as a proton-motive force-generating mechanism in bacterial membrane vesicles. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7555–7559. doi: 10.1073/pnas.82.22.7555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eddy A. A. Mechanisms of solute transport in selected eukaryotic micro-organisms. Adv Microb Physiol. 1982;23:1-78, 269-70. doi: 10.1016/s0065-2911(08)60335-5. [DOI] [PubMed] [Google Scholar]
  11. Franzusoff A. J., Cirillo V. P. Glucose transport activity in isolated plasma membrane vesicles from Saccharomyces cerevisiae. J Biol Chem. 1983 Mar 25;258(6):3608–3614. [PubMed] [Google Scholar]
  12. Goffeau A., Slayman C. W. The proton-translocating ATPase of the fungal plasma membrane. Biochim Biophys Acta. 1981 Dec 30;639(3-4):197–223. doi: 10.1016/0304-4173(81)90010-0. [DOI] [PubMed] [Google Scholar]
  13. Heyne R. I., de Vrij W., Crielaard W., Konings W. N. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus. J Bacteriol. 1991 Jan;173(2):791–800. doi: 10.1128/jb.173.2.791-800.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoekstra D., de Boer T., Klappe K., Wilschut J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry. 1984 Nov 20;23(24):5675–5681. doi: 10.1021/bi00319a002. [DOI] [PubMed] [Google Scholar]
  15. Hubbard M. J., Surarit R., Sullivan P. A., Shepherd M. G. The isolation of plasma membrane and characterisation of the plasma membrane ATPase from the yeast Candida albicans. Eur J Biochem. 1986 Jan 15;154(2):375–381. doi: 10.1111/j.1432-1033.1986.tb09408.x. [DOI] [PubMed] [Google Scholar]
  16. Kaczorowski G. J., Kaback H. R. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow. Biochemistry. 1979 Aug 21;18(17):3691–3697. doi: 10.1021/bi00584a009. [DOI] [PubMed] [Google Scholar]
  17. Komor E., Schwab W. G., Tanner W. The effect of intracellular pH on the rate of hexose uptake in Chlorella. Biochim Biophys Acta. 1979 Aug 23;555(3):524–530. doi: 10.1016/0005-2736(79)90406-1. [DOI] [PubMed] [Google Scholar]
  18. Kotyk A., Ríhová L., Ponec M. Uptake of amino acids by actidione-treated yeast cells. II. Effect of incubation conditions and metabolic inhibitors. Folia Microbiol (Praha) 1971;16(6):445–450. doi: 10.1007/BF02872716. [DOI] [PubMed] [Google Scholar]
  19. Kotyk A., Ríhová L. Transport of -aminoisobutyric acid in Saccharomyces cerevisiae. Biochim Biophys Acta. 1972 Nov 2;288(2):380–389. doi: 10.1016/0005-2736(72)90259-3. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lagunas R. Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol Rev. 1993 Apr;10(3-4):229–242. doi: 10.1016/0378-1097(93)90598-v. [DOI] [PubMed] [Google Scholar]
  22. Loureiro-Dias M. C., Peinado J. M. Transport of maltose in Saccharomyces cerevisiae. Effect of pH and potassium ions. Biochem J. 1984 Sep 1;222(2):293–298. doi: 10.1042/bj2220293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
  24. Ongjoco R., Szkutnicka K., Cirillo V. P. Glucose transport in vesicles reconstituted from Saccharomyces cerevisiae membranes and liposomes. J Bacteriol. 1987 Jul;169(7):2926–2931. doi: 10.1128/jb.169.7.2926-2931.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Opekarová M., Caspari T., Tanner W. Unidirectional arginine transport in reconstituted plasma-membrane vesicles from yeast overexpressing CAN1. Eur J Biochem. 1993 Feb 1;211(3):683–688. doi: 10.1111/j.1432-1033.1993.tb17596.x. [DOI] [PubMed] [Google Scholar]
  26. Paardekooper M., De Bruijne A. W., Van Steveninck J., Van den Broek P. J. Inhibition of transport systems in yeast by photodynamic treatment with toluidine blue. Biochim Biophys Acta. 1993 Sep 19;1151(2):143–148. doi: 10.1016/0005-2736(93)90097-j. [DOI] [PubMed] [Google Scholar]
  27. Peinado J. M., Cameira-dos-Santos P. J., Loureiro-Días M. C. Regulation of glucose transport in Candida utilis. J Gen Microbiol. 1989 Jan;135(1):195–201. doi: 10.1099/00221287-135-1-195. [DOI] [PubMed] [Google Scholar]
  28. Prabhananda B. S., Kombrabail M. H. Monensin-mediated transports of H+, Na+, K+ and Li+ ions across vesicular membranes: T-jump studies. Biochim Biophys Acta. 1992 Apr 29;1106(1):171–177. doi: 10.1016/0005-2736(92)90236-f. [DOI] [PubMed] [Google Scholar]
  29. Ramos J., Szkutnicka K., Cirillo V. P. Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles. J Bacteriol. 1989 Jun;171(6):3539–3544. doi: 10.1128/jb.171.6.3539-3544.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rottenberg H. The driving force for proton(s) metabolites cotransport in bacterial cells. FEBS Lett. 1976 Jul 15;66(2):159–163. doi: 10.1016/0014-5793(76)80493-0. [DOI] [PubMed] [Google Scholar]
  31. Shinbo T., Kamo N., Kurihara K., Kobatake Y. A PVC-based electrode sensitive to DDA+ as a device for monitoring the membrane potential in biological systems. Arch Biochem Biophys. 1978 Apr 30;187(2):414–422. doi: 10.1016/0003-9861(78)90052-8. [DOI] [PubMed] [Google Scholar]
  32. Stambuk B. U., De Araujo P. S., Panek A. D., Serrano R. Kinetics and energetics of trehalose transport in Saccharomyces cerevisiae. Eur J Biochem. 1996 May 1;237(3):876–881. doi: 10.1111/j.1432-1033.1996.0876p.x. [DOI] [PubMed] [Google Scholar]
  33. Tijssen J. P., Dubbelman T. M., Van Steveninck J. Isolation and characterization of polyphosphates from the yeast cell surface. Biochim Biophys Acta. 1983 Oct 4;760(1):143–148. doi: 10.1016/0304-4165(83)90135-6. [DOI] [PubMed] [Google Scholar]
  34. Van Leeuwen C. C., Postma E., Van den Broek P. J., Van Steveninck J. Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus. J Biol Chem. 1991 Jul 5;266(19):12146–12151. [PubMed] [Google Scholar]
  35. Van Leeuwen C. C., Weusthuis R. A., Postma E., Van den Broek P. J., Van Dijken J. P. Maltose/proton co-transport in Saccharomyces cerevisiae. Comparative study with cells and plasma membrane vesicles. Biochem J. 1992 Jun 1;284(Pt 2):441–445. doi: 10.1042/bj2840441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Viitanen P., Newman M. J., Foster D. L., Wilson T. H., Kaback H. R. Purification, reconstitution, and characterization of the lac permease of Escherichia coli. Methods Enzymol. 1986;125:429–452. doi: 10.1016/s0076-6879(86)25034-x. [DOI] [PubMed] [Google Scholar]
  37. Weusthuis R. A., Adams H., Scheffers W. A., van Dijken J. P. Energetics and kinetics of maltose transport in Saccharomyces cerevisiae: a continuous culture study. Appl Environ Microbiol. 1993 Sep;59(9):3102–3109. doi: 10.1128/aem.59.9.3102-3109.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weusthuis R. A., Pronk J. T., van den Broek P. J., van Dijken J. P. Chemostat cultivation as a tool for studies on sugar transport in yeasts. Microbiol Rev. 1994 Dec;58(4):616–630. doi: 10.1128/mr.58.4.616-630.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. YONETANI T. Studies on cytochrome oxidase. III. Improved preparation and some properties. J Biol Chem. 1961 Jun;236:1680–1688. [PubMed] [Google Scholar]
  40. Yu C., Yu L., King T. E. Studies on cytochrome oxidase. Interactions of the cytochrome oxidase protein with phospholipids and cytochrome c. J Biol Chem. 1975 Feb 25;250(4):1383–1392. [PubMed] [Google Scholar]
  41. de Vrij W., Driessen A. J., Hellingwerf K. J., Konings W. N. Measurements of the proton motive force generated by cytochrome c oxidase from Bacillus subtilis in proteoliposomes and membrane vesicles. Eur J Biochem. 1986 Apr 15;156(2):431–440. doi: 10.1111/j.1432-1033.1986.tb09600.x. [DOI] [PubMed] [Google Scholar]
  42. van Urk H., Postma E., Scheffers W. A., van Dijken J. P. Glucose transport in crabtree-positive and crabtree-negative yeasts. J Gen Microbiol. 1989 Sep;135(9):2399–2406. doi: 10.1099/00221287-135-9-2399. [DOI] [PubMed] [Google Scholar]
  43. van den Broek P. J., van Steveninck J. Kinetic analysis of simultaneously occurring proton-sorbose symport and passive sorbose transport in Saccharomyces fragilis. Biochim Biophys Acta. 1980 Nov 4;602(2):419–432. doi: 10.1016/0005-2736(80)90321-1. [DOI] [PubMed] [Google Scholar]
  44. van der Rest M. E., de Vries Y., Poolman B., Konings W. N. Overexpression of Mal61p in Saccharomyces cerevisiae and characterization of maltose transport in artificial membranes. J Bacteriol. 1995 Oct;177(19):5440–5446. doi: 10.1128/jb.177.19.5440-5446.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES