Abstract
The effects of acidic pH on the kinetics of Ca2+-ATPase isoforms from intracellular membranes of skeletal muscle, cardiac muscle, cerebellum and blood platelets were studied. At neutral pH, all four Ca2+-ATPase isoforms exhibited similar Ca2+-concentration requirements for half-maximal rates of Ca2+ uptake and ATP hydrolysis. A decrease in the pH from 7.0 to 6.0 promoted a decrease in both the apparent affinity for Ca2+ [increasing half-maximal activation (K0.5)] and the maximal velocity (Vmax) of Ca2+ uptake. With skeletal muscle vesicles these effect were 5 to 10 times smaller than those observed with all the other isoforms. Acidification of the medium from pH 7.0 to 6.5 caused the release of Ca2+ from loaded vesicles and a decrease in the amount of Ca2+ retained by the vesicles at the steady state. With the vesicles derived from skeletal muscle these effects were smaller than for vesicles derived from other tissues. The rate of passive Ca2+ efflux from skeletal and cardiac muscle vesicles, loaded with Ca2+ and diluted in a medium containing none of the ligands of Ca2+-ATPase, was the same at pH 7.0 and 6.0. In contrast, the rate of Ca2+ efflux from cerebellar and platelet vesicles increased 2-fold after acidification of the medium. The effects of DMSO, Mg2+ with Pi and arsenate on the rate of Ca2+ efflux varied among the different preparations tested. The differences became more pronounced when the pH of the medium was decreased from 7.0 to 6.0. It is proposed that the kinetic differences among the Ca2+-ATPase isoforms may reflect different adaptations to cellular acidosis, such as that which occurs during ischaemia.
Full Text
The Full Text of this article is available as a PDF (575.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alves E. W., de Meis L. Effects of arsenate on the Ca2+ ATPase of sarcoplasmic reticulum. Eur J Biochem. 1987 Aug 3;166(3):647–651. doi: 10.1111/j.1432-1033.1987.tb13562.x. [DOI] [PubMed] [Google Scholar]
- Benech J. C., Wolosker H., de Meis L. Reversal of the Ca2+ pump of blood platelets. Biochem J. 1995 Feb 15;306(Pt 1):35–38. doi: 10.1042/bj3060035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bers D. M., Ellis D. Intracellular calcium and sodium activity in sheep heart Purkinje fibres. Effect of changes of external sodium and intracellular pH. Pflugers Arch. 1982 Apr;393(2):171–178. doi: 10.1007/BF00582941. [DOI] [PubMed] [Google Scholar]
- Brandl C. J., deLeon S., Martin D. R., MacLennan D. H. Adult forms of the Ca2+ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem. 1987 Mar 15;262(8):3768–3774. [PubMed] [Google Scholar]
- Burk S. E., Lytton J., MacLennan D. H., Shull G. E. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem. 1989 Nov 5;264(31):18561–18568. [PubMed] [Google Scholar]
- Campbell A. M., Kessler P. D., Sagara Y., Inesi G., Fambrough D. M. Nucleotide sequences of avian cardiac and brain SR/ER Ca(2+)-ATPases and functional comparisons with fast twitch Ca(2+)-ATPase. Calcium affinities and inhibitor effects. J Biol Chem. 1991 Aug 25;266(24):16050–16055. [PubMed] [Google Scholar]
- Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
- Cardoso C. M., De Meis L. Modulation by fatty acids of Ca2+ fluxes in sarcoplasmic-reticulum vesicles. Biochem J. 1993 Nov 15;296(Pt 1):49–52. doi: 10.1042/bj2960049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiesi M., Inesi G. The use of quench reagents for resolution of single transport cycles in sarcoplasmic reticulum. J Biol Chem. 1979 Oct 25;254(20):10370–10377. [PubMed] [Google Scholar]
- Choi D. W. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988 Oct;11(10):465–469. doi: 10.1016/0166-2236(88)90200-7. [DOI] [PubMed] [Google Scholar]
- Dawson M. J., Gadian D. G., Wilkie D. R. Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance. J Physiol. 1980 Feb;299:465–484. doi: 10.1113/jphysiol.1980.sp013137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donoso P., Hidalgo C. pH-sensitive calcium release in triads from frog skeletal muscle. Rapid filtration studies. J Biol Chem. 1993 Dec 5;268(34):25432–25438. [PubMed] [Google Scholar]
- Dubinsky J. M., Rothman S. M. Intracellular calcium concentrations during "chemical hypoxia" and excitotoxic neuronal injury. J Neurosci. 1991 Aug;11(8):2545–2551. doi: 10.1523/JNEUROSCI.11-08-02545.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eletr S., Inesi G. Phospholipid orientation in sarcoplasmic membranes: spin-label ESR and proton MNR studies. Biochim Biophys Acta. 1972 Sep 1;282(1):174–179. doi: 10.1016/0005-2736(72)90321-5. [DOI] [PubMed] [Google Scholar]
- Engelender S., Wolosker H., de Meis L. The Ca(2+)-ATPase isoforms of platelets are located in distinct functional Ca2+ pools and are uncoupled by a mechanism different from that of skeletal muscle Ca(2+)-ATPase. J Biol Chem. 1995 Sep 8;270(36):21050–21055. doi: 10.1074/jbc.270.36.21050. [DOI] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978 Mar;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitts R. H. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994 Jan;74(1):49–94. doi: 10.1152/physrev.1994.74.1.49. [DOI] [PubMed] [Google Scholar]
- Gadian D. G., Hoult D. I., Radda G. K., Seeley P. J., Chance B., Barlow C. Phosphorus nuclear magnetic resonance studies on normoxic and ischemic cardiac tissue. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4446–4448. doi: 10.1073/pnas.73.12.4446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garlick P. B., Radda G. K., Seeley P. J. Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance. Biochem J. 1979 Dec 15;184(3):547–554. doi: 10.1042/bj1840547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guppy M., Abas L., Arthur P. G., Whisson M. E. The Pasteur effect in human platelets: implications for storage and metabolic control. Br J Haematol. 1995 Nov;91(3):752–757. doi: 10.1111/j.1365-2141.1995.tb05381.x. [DOI] [PubMed] [Google Scholar]
- Harigaya S., Schwartz A. Rate of calcium binding and uptake in normal animal and failing human cardiac muscle. Membrane vesicles (relaxing system) and mitochondria. Circ Res. 1969 Dec;25(6):781–794. doi: 10.1161/01.res.25.6.781. [DOI] [PubMed] [Google Scholar]
- Hasselbach W., Makinose M., Migala A. The arsenate induced calcium release from sarcoplasmic vesicles. FEBS Lett. 1972 Feb 15;20(3):311–315. doi: 10.1016/0014-5793(72)80094-2. [DOI] [PubMed] [Google Scholar]
- Hope P. L., Cady E. B., Chu A., Delpy D. T., Gardiner R. M., Reynolds E. O. Brain metabolism and intracellular pH during ischaemia and hypoxia: an in vivo 31P and 1H nuclear magnetic resonance study in the lamb. J Neurochem. 1987 Jul;49(1):75–82. doi: 10.1111/j.1471-4159.1987.tb03396.x. [DOI] [PubMed] [Google Scholar]
- Inesi G. Mechanism of calcium transport. Annu Rev Physiol. 1985;47:573–601. doi: 10.1146/annurev.ph.47.030185.003041. [DOI] [PubMed] [Google Scholar]
- Inesi G., de Meis L. Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pump. J Biol Chem. 1989 Apr 5;264(10):5929–5936. [PubMed] [Google Scholar]
- Joseph S. K., Rice H. L., Williamson J. R. The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions. Biochem J. 1989 Feb 15;258(1):261–265. doi: 10.1042/bj2580261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaila K., Voipio J. Dependence of intracellular free calcium and tension on membrane potential and intracellular pH in single crayfish muscle fibres. Pflugers Arch. 1990 Jul;416(5):501–511. doi: 10.1007/BF00382682. [DOI] [PubMed] [Google Scholar]
- Kijima Y., Ogunbunmi E., Fleischer S. Drug action of thapsigargin on the Ca2+ pump protein of sarcoplasmic reticulum. J Biol Chem. 1991 Dec 5;266(34):22912–22918. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Le Peuch C. J., Le Peuch D. A., Katz S., Demaille J. G., Hincke M. T., Bredoux R., Enouf J., Levy-Toledano S., Caen J. Regulation of calcium accumulation and efflux from platelet vesicles. Possible role for cyclic-AMP-dependent phosphorylation and calmodulin. Biochim Biophys Acta. 1983 Jun 23;731(3):456–464. doi: 10.1016/0005-2736(83)90041-x. [DOI] [PubMed] [Google Scholar]
- Lytton J., MacLennan D. H. Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem. 1988 Oct 15;263(29):15024–15031. [PubMed] [Google Scholar]
- Lytton J., Westlin M., Burk S. E., Shull G. E., MacLennan D. H. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem. 1992 Jul 15;267(20):14483–14489. [PubMed] [Google Scholar]
- Lytton J., Westlin M., Burk S. E., Shull G. E., MacLennan D. H. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem. 1992 Jul 15;267(20):14483–14489. [PubMed] [Google Scholar]
- Ma J., Fill M., Knudson C. M., Campbell K. P., Coronado R. Ryanodine receptor of skeletal muscle is a gap junction-type channel. Science. 1988 Oct 7;242(4875):99–102. doi: 10.1126/science.2459777. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H., Brandl C. J., Korczak B., Green N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature. 1985 Aug 22;316(6030):696–700. doi: 10.1038/316696a0. [DOI] [PubMed] [Google Scholar]
- Mandel F., Kranias E. G., Grassi de Gende A., Sumida M., Schwartz A. The effect of pH on the transient-state kinetics of Ca2+-Mg2+-ATPase of cardiac sarcoplasmic reticulum. A comparison with skeletal sarcoplasmic reticulum. Circ Res. 1982 Feb;50(2):310–317. doi: 10.1161/01.res.50.2.310. [DOI] [PubMed] [Google Scholar]
- Meissner G. ATP and Ca2+ binding by the Ca2+ pump protein of sarcoplasmic reticulum. Biochim Biophys Acta. 1973 Apr 16;298(4):906–926. doi: 10.1016/0005-2736(73)90395-7. [DOI] [PubMed] [Google Scholar]
- Miller K. K., Verma A., Snyder S. H., Ross C. A. Localization of an endoplasmic reticulum calcium ATPase mRNA in rat brain by in situ hybridization. Neuroscience. 1991;43(1):1–9. doi: 10.1016/0306-4522(91)90410-p. [DOI] [PubMed] [Google Scholar]
- Mitidieri F., de Meis L. Ethanol has different effects on Ca(2+)-transport ATPases of muscle, brain and blood platelets. Biochem J. 1995 Dec 15;312(Pt 3):733–737. doi: 10.1042/bj3120733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy S., Gardner F. H. Platelet storage at 22 degrees C: role of gas transport across plastic containers in maintenance of viability. Blood. 1975 Aug;46(2):209–218. [PubMed] [Google Scholar]
- Nedergaard M., Goldman S. A., Desai S., Pulsinelli W. A. Acid-induced death in neurons and glia. J Neurosci. 1991 Aug;11(8):2489–2497. doi: 10.1523/JNEUROSCI.11-08-02489.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papp B., Enyedi A., Kovács T., Sarkadi B., Wuytack F., Thastrup O., Gárdos G., Bredoux R., Levy-Toledano S., Enouf J. Demonstration of two forms of calcium pumps by thapsigargin inhibition and radioimmunoblotting in platelet membrane vesicles. J Biol Chem. 1991 Aug 5;266(22):14593–14596. [PubMed] [Google Scholar]
- Pick U., Bassilian S. The effects of ADP, phosphate and arsenate on Ca efflux from sarcoplasmic reticulum vesicles. Eur J Biochem. 1983 Mar 15;131(2):393–399. doi: 10.1111/j.1432-1033.1983.tb07276.x. [DOI] [PubMed] [Google Scholar]
- Pick U., Karlish S. J. Regulation of the conformation transition in the Ca-ATPase from sarcoplasmic reticulum by pH, temperature, and calcium ions. J Biol Chem. 1982 Jun 10;257(11):6120–6126. [PubMed] [Google Scholar]
- Rocha J. B., Wolosker H., Souza D. O., de Meis L. Alteration of Ca2+ fluxes in brain microsomes by K+ and Na+: modulation by sulfated polysaccharides and trifluoperazine. J Neurochem. 1996 Feb;66(2):772–778. doi: 10.1046/j.1471-4159.1996.66020772.x. [DOI] [PubMed] [Google Scholar]
- Ross C. A., Bredt D., Snyder S. H. Messenger molecules in the cerebellum. Trends Neurosci. 1990 Jun;13(6):216–222. doi: 10.1016/0166-2236(90)90163-5. [DOI] [PubMed] [Google Scholar]
- Rousseau E., Pinkos J. pH modulates conducting and gating behaviour of single calcium release channels. Pflugers Arch. 1990 Feb;415(5):645–647. doi: 10.1007/BF02583520. [DOI] [PubMed] [Google Scholar]
- Sorenson M. M., Coelho H. S., Reuben J. P. Caffeine inhibition of calcium accumulation by the sarcoplasmic reticulum in mammalian skinned fibers. J Membr Biol. 1986;90(3):219–230. doi: 10.1007/BF01870128. [DOI] [PubMed] [Google Scholar]
- Supattapone S., Danoff S. K., Theibert A., Joseph S. K., Steiner J., Snyder S. H. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8747–8750. doi: 10.1073/pnas.85.22.8747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tada M., Kadoma M., Inui M., Fujii J. Regulation of Ca2+-pump from cardiac sarcoplasmic reticulum. Methods Enzymol. 1988;157:107–154. doi: 10.1016/0076-6879(88)57073-8. [DOI] [PubMed] [Google Scholar]
- Tsunoda Y., Matsuno K., Tashiro Y. Cytosolic acidification leads to Ca2+ mobilization from intracellular stores in single and populational parietal cells and platelets. Exp Cell Res. 1991 Apr;193(2):356–363. doi: 10.1016/0014-4827(91)90107-6. [DOI] [PubMed] [Google Scholar]
- Verboomen H., Wuytack F., De Smedt H., Himpens B., Casteels R. Functional difference between SERCA2a and SERCA2b Ca2+ pumps and their modulation by phospholamban. Biochem J. 1992 Sep 1;286(Pt 2):591–595. doi: 10.1042/bj2860591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verjovski-Almeida S., de Meis L. PH-induced changes in the reactions controlled by the low- and high-affinity Ca2+-binding sites in sarcoplasmic reticulum. Biochemistry. 1977 Jan 25;16(2):329–334. doi: 10.1021/bi00621a026. [DOI] [PubMed] [Google Scholar]
- Verma A., Hirsch D. J., Hanley M. R., Thastrup O., Christensen S. B., Snyder S. H. Inositol trisphosphate and thapsigargin discriminate endoplasmic reticulum stores of calcium in rat brain. Biochem Biophys Res Commun. 1990 Oct 30;172(2):811–816. doi: 10.1016/0006-291x(90)90747-b. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Lewis D., Nakamoto R., Kurzmack M., Fronticelli C., Inesi G. Modulation of calcium binding in sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry. 1981 Nov 10;20(23):6617–6625. doi: 10.1021/bi00526a015. [DOI] [PubMed] [Google Scholar]
- Westerblad H., Lee J. A., Lännergren J., Allen D. G. Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol. 1991 Aug;261(2 Pt 1):C195–C209. doi: 10.1152/ajpcell.1991.261.2.C195. [DOI] [PubMed] [Google Scholar]
- Wolosker H., Pacheco A. G., de Meis L. Local anesthetics induce fast Ca2+ efflux through a nonenergized state of the sarcoplasmic reticulum Ca(2+)-ATPase. J Biol Chem. 1992 Mar 25;267(9):5785–5789. [PubMed] [Google Scholar]
- Wolosker H., de Meis L. Ligand-gated channel of the sarcoplasmic reticulum Ca2+ transport ATPase. Biosci Rep. 1995 Oct;15(5):365–376. doi: 10.1007/BF01788368. [DOI] [PubMed] [Google Scholar]
- Wolosker H., de Meis L. pH-dependent inhibitory effects of Ca2+, Mg2+, and K+ on Ca2+ efflux mediated by sarcoplasmic reticulum ATPase. Am J Physiol. 1994 May;266(5 Pt 1):C1376–C1381. doi: 10.1152/ajpcell.1994.266.5.C1376. [DOI] [PubMed] [Google Scholar]
- Wu K. D., Lee W. S., Wey J., Bungard D., Lytton J. Localization and quantification of endoplasmic reticulum Ca(2+)-ATPase isoform transcripts. Am J Physiol. 1995 Sep;269(3 Pt 1):C775–C784. doi: 10.1152/ajpcell.1995.269.3.C775. [DOI] [PubMed] [Google Scholar]
- Wuytack F., Papp B., Verboomen H., Raeymaekers L., Dode L., Bobe R., Enouf J., Bokkala S., Authi K. S., Casteels R. A sarco/endoplasmic reticulum Ca(2+)-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells, and in mast cells. J Biol Chem. 1994 Jan 14;269(2):1410–1416. [PubMed] [Google Scholar]
- de Meis L. Approaches to studying the mechanisms of ATP synthesis in sarcoplasmic reticulum. Methods Enzymol. 1988;157:190–206. doi: 10.1016/0076-6879(88)57075-1. [DOI] [PubMed] [Google Scholar]
- de Meis L. Fast efflux of Ca2+ mediated by the sarcoplasmic reticulum Ca2(+)-ATPase. J Biol Chem. 1991 Mar 25;266(9):5736–5742. [PubMed] [Google Scholar]
- de Meis L., Inesi G. Functional evidence of a transmembrane channel within the Ca2+ transport ATPase of sarcoplasmic reticulum. FEBS Lett. 1992 Mar 24;299(1):33–35. doi: 10.1016/0014-5793(92)80093-v. [DOI] [PubMed] [Google Scholar]
- de Meis L., Suzano V. A., Inesi G. Functional interactions of catalytic site and transmembrane channel in the sarcoplasmic reticulum ATPase. J Biol Chem. 1990 Nov 5;265(31):18848–18851. [PubMed] [Google Scholar]
- de Meis L., Suzano V. A. Uncoupling of muscle and blood platelets Ca2+ transport ATPases by heparin. Regulation by K+. J Biol Chem. 1994 May 20;269(20):14525–14529. [PubMed] [Google Scholar]
- de Meis L., Tume R. K. A new mechanism by which an H+ concentration gradient drives the synthesis of adenosine triphosphate, pH jump, and adenosine triphosphate synthesis by the Ca2+-dependnet adenosine triphosphatase of sarcoplasmic reticulum. Biochemistry. 1977 Oct 4;16(20):4455–4463. doi: 10.1021/bi00639a020. [DOI] [PubMed] [Google Scholar]
- de Meis L., Vianna A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem. 1979;48:275–292. doi: 10.1146/annurev.bi.48.070179.001423. [DOI] [PubMed] [Google Scholar]
- von Hanwehr R., Smith M. L., Siesjö B. K. Extra- and intracellular pH during near-complete forebrain ischemia in the rat. J Neurochem. 1986 Feb;46(2):331–339. doi: 10.1111/j.1471-4159.1986.tb12973.x. [DOI] [PubMed] [Google Scholar]