Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 1;321(Pt 3):691–698. doi: 10.1042/bj3210691

Partition of the organochlorine insecticide lindane into the human sperm surface induces membrane depolarization and Ca2+ influx.

L Silvestroni 1, R Fiorini 1, S Palleschi 1
PMCID: PMC1218124  PMID: 9032455

Abstract

The effects of the insecticide lindane (the gamma-isomer of 1,2,3,4,5,6-hexachlorocyclohexane) on membrane potential, cytosolic free Ca2+ concentration ([Ca2+]i) and surface biophysical properties were studied in human spermatozoa. The insecticide induces rapid, transient and reproducible membrane depolarization and opening of voltage-dependent Ca2+ channels leading to an increase in [Ca2+]i. In contrast with the effect in somatic cells, lindane did not affect gamma-aminobutyric acid receptor-linked Cl- currents. Ca2+ and K+ currents were found to drive lindane-induced membrane depolarization and repolarization respectively, whereas Na+ and Cl- fluxes appear not to have a role in the phenomenon. The insecticide was still able to produce membrane depolarization both in the combined absence of extracellular Ca2+ and Na+ and in high-K+ buffer, suggesting that lindane alters the membrane dipole potential. In agreement with this, Laurodan and Prodan fluorescence spectroscopy revealed that lindane partition into the sperm plasma membrane lowers water molecular dynamics in the uppermost region of the membrane external leaflet, probably as the result of reordering of water dipoles. We propose that the first effect of lindane partitioning into the sperm plasma membrane is a change in the membrane dipole potential, which results in the activation of membrane-located Ca2+-influx pathways.

Full Text

The Full Text of this article is available as a PDF (368.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson T., Drakenberg T., Forsén S., Thulin E. Characterization of the Ca2+ binding sites of calmodulin from bovine testis using 43Ca and 113Cd NMR. Eur J Biochem. 1982 Sep 1;126(3):501–505. doi: 10.1111/j.1432-1033.1982.tb06808.x. [DOI] [PubMed] [Google Scholar]
  2. Antunes-Madeira M. C., Almeida L. M., Madeira V. M. Depth-dependent effects of DDT and lindane on the fluidity of native membranes and extracted lipids. Implications for mechanisms of toxicity. Bull Environ Contam Toxicol. 1993 Dec;51(6):787–794. doi: 10.1007/BF00198271. [DOI] [PubMed] [Google Scholar]
  3. Antunes-Madeira M. C., Madeira V. M. Membrane fluidity as affected by the insecticide lindane. Biochim Biophys Acta. 1989 Jun 26;982(1):161–166. doi: 10.1016/0005-2736(89)90187-9. [DOI] [PubMed] [Google Scholar]
  4. Antunes-Madeira M. C., Madeira V. M. Partition of lindane in synthetic and native membranes. Biochim Biophys Acta. 1985 Nov 7;820(2):165–172. doi: 10.1016/0005-2736(85)90109-9. [DOI] [PubMed] [Google Scholar]
  5. Avdonin P. V., Cheglakov I. B., Tkachuk V. A. Stimulation of non-selective cation channels providing Ca2+ influx into platelets by platelet-activating factor and other aggregation inducers. Eur J Biochem. 1991 May 23;198(1):267–273. doi: 10.1111/j.1432-1033.1991.tb16011.x. [DOI] [PubMed] [Google Scholar]
  6. Babcock D. F., Bosma M. M., Battaglia D. E., Darszon A. Early persistent activation of sperm K+ channels by the egg peptide speract. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6001–6005. doi: 10.1073/pnas.89.13.6001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Barrón S., Serratosa J., Tusell J. M. Regulation of c-fos expression by convulsants and hexachlorocyclohexane isomers in primary cultures of cortical neurons. J Neurochem. 1995 Apr;64(4):1708–1714. doi: 10.1046/j.1471-4159.1995.64041708.x. [DOI] [PubMed] [Google Scholar]
  8. Bhunya S. P., Jena G. B. Genotoxic potential of the organochlorine insecticide lindane (gamma-BHC): an in vivo study in chicks. Mutat Res. 1992 Oct;272(2):175–181. doi: 10.1016/0165-1161(92)90045-n. [DOI] [PubMed] [Google Scholar]
  9. Braunbeck T., Görge G., Storch V., Nagel R. Hepatic steatosis in zebra fish (Brachydanio rerio) induced by long-term exposure to gamma-hexachlorocyclohexane. Ecotoxicol Environ Saf. 1990 Jun;19(3):355–374. doi: 10.1016/0147-6513(90)90036-5. [DOI] [PubMed] [Google Scholar]
  10. Chowdhury A. R., Gautam A. K., Bhatnagar V. K. Lindane induced changes in morphology and lipids profile of testes in rats. Biomed Biochim Acta. 1990;49(10):1059–1065. [PubMed] [Google Scholar]
  11. Cox T., Campbell P., Peterson R. N. Ion channels in boar sperm plasma membranes: characterization of a cation selective channel. Mol Reprod Dev. 1991 Oct;30(2):135–147. doi: 10.1002/mrd.1080300210. [DOI] [PubMed] [Google Scholar]
  12. Criswell K. A., Stuenkel E. L., Loch-Caruso R. Lindane increases intracellular calcium in rat myometrial smooth muscle cells through modulation of inositol 1,4,5-trisphosphate-sensitive stores. J Pharmacol Exp Ther. 1994 Sep;270(3):1015–1024. [PubMed] [Google Scholar]
  13. Eldefrawi A. T., Eldefrawi M. E. Receptors for gamma-aminobutyric acid and voltage-dependent chloride channels as targets for drugs and toxicants. FASEB J. 1987 Oct;1(4):262–271. doi: 10.1096/fasebj.1.4.2443413. [DOI] [PubMed] [Google Scholar]
  14. Foresta C., Rossato M., Di Virgilio F. Ion fluxes through the progesterone-activated channel of the sperm plasma membrane. Biochem J. 1993 Aug 15;294(Pt 1):279–283. doi: 10.1042/bj2940279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Franklin J. C., Cafiso D. S. Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Biophys J. 1993 Jul;65(1):289–299. doi: 10.1016/S0006-3495(93)81051-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gross E., Bedlack R. S., Jr, Loew L. M. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J. 1994 Jul;67(1):208–216. doi: 10.1016/S0006-3495(94)80471-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hassoun E., Bagchi M., Bagchi D., Stohs S. J. Comparative studies on lipid peroxidation and DNA-single strand breaks induced by lindane, DDT, chlordane and endrin in rats. Comp Biochem Physiol C. 1993 Mar;104(3):427–431. doi: 10.1016/0742-8413(93)90013-b. [DOI] [PubMed] [Google Scholar]
  19. Hess P., Tsien R. W. Mechanism of ion permeation through calcium channels. 1984 May 31-Jun 6Nature. 309(5967):453–456. doi: 10.1038/309453a0. [DOI] [PubMed] [Google Scholar]
  20. Irvine D. S. Falling sperm quality. BMJ. 1994 Aug 13;309(6952):476–476. doi: 10.1136/bmj.309.6952.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jordan P. C. How pore mouth charge distributions alter the permeability of transmembrane ionic channels. Biophys J. 1987 Feb;51(2):297–311. doi: 10.1016/S0006-3495(87)83336-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lopata A., Patullo M. J., Chang A., James B. A method for collecting motile spermatozoa from human semen. Fertil Steril. 1976 Jun;27(6):677–684. doi: 10.1016/s0015-0282(16)41899-6. [DOI] [PubMed] [Google Scholar]
  23. McNutt T. L., Harris C. Lindane embryotoxicity and differential alteration of cysteine and glutathione levels in rat embryos and visceral yolk sacs. Reprod Toxicol. 1994 Jul-Aug;8(4):351–362. doi: 10.1016/0890-6238(94)90051-5. [DOI] [PubMed] [Google Scholar]
  24. Meera P., Tripathi O., Kamboj K. K., Rao P. R. Role of calcium in biphasic immunomodulation by gamma-HCH (lindane) in mice. Immunopharmacol Immunotoxicol. 1993 Jan;15(1):113–129. doi: 10.3109/08923979309066937. [DOI] [PubMed] [Google Scholar]
  25. Naito M., Sasaki N., Kambara T. Mechanism of the electric response of lipid bilayers to bitter substances. Biophys J. 1993 Sep;65(3):1219–1230. doi: 10.1016/S0006-3495(93)81159-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Narahashi T., Herman M. D. Overview of toxins and drugs as tools to study excitable membrane ion channels: I. Voltage-activated channels. Methods Enzymol. 1992;207:620–643. doi: 10.1016/0076-6879(92)07045-p. [DOI] [PubMed] [Google Scholar]
  27. Narahashi T., Tsunoo A., Yoshii M. Characterization of two types of calcium channels in mouse neuroblastoma cells. J Physiol. 1987 Feb;383:231–249. doi: 10.1113/jphysiol.1987.sp016406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Noiles E. E., Mazur P., Watson P. F., Kleinhans F. W., Critser J. K. Determination of water permeability coefficient for human spermatozoa and its activation energy. Biol Reprod. 1993 Jan;48(1):99–109. doi: 10.1095/biolreprod48.1.99. [DOI] [PubMed] [Google Scholar]
  29. Nomura T., Kurihara K. Liposomes as a model for olfactory cells: changes in membrane potential in response to various odorants. Biochemistry. 1987 Sep 22;26(19):6135–6140. doi: 10.1021/bi00393a028. [DOI] [PubMed] [Google Scholar]
  30. Palleschi S., Silvestroni L. Laurdan fluorescence spectroscopy reveals a single liquid-crystalline lipid phase and lack of thermotropic phase transitions in the plasma membrane of living human sperm. Biochim Biophys Acta. 1996 Mar 13;1279(2):197–202. doi: 10.1016/0005-2736(95)00250-2. [DOI] [PubMed] [Google Scholar]
  31. Pallotta B. S., Blatz A. L., Magleby K. L. Recording from calcium-activated potassium channels. Methods Enzymol. 1992;207:194–207. doi: 10.1016/0076-6879(92)07014-f. [DOI] [PubMed] [Google Scholar]
  32. Parasassi T., De Stasio G., Ravagnan G., Rusch R. M., Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J. 1991 Jul;60(1):179–189. doi: 10.1016/S0006-3495(91)82041-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Parasassi T., Giusti A. M., Gratton E., Monaco E., Raimondi M., Ravagnan G., Sapora O. Evidence for an increase in water concentration in bilayers after oxidative damage of phospholipids induced by ionizing radiation. Int J Radiat Biol. 1994 Mar;65(3):329–334. doi: 10.1080/09553009414550391. [DOI] [PubMed] [Google Scholar]
  34. Parasassi T., Giusti A. M., Gratton E., Monaco E., Raimondi M., Ravagnan G., Sapora O. Evidence for an increase in water concentration in bilayers after oxidative damage of phospholipids induced by ionizing radiation. Int J Radiat Biol. 1994 Mar;65(3):329–334. doi: 10.1080/09553009414550391. [DOI] [PubMed] [Google Scholar]
  35. Parasassi T., Loiero M., Raimondi M., Ravagnan G., Gratton E. Absence of lipid gel-phase domains in seven mammalian cell lines and in four primary cell types. Biochim Biophys Acta. 1993 Dec 12;1153(2):143–154. doi: 10.1016/0005-2736(93)90399-k. [DOI] [PubMed] [Google Scholar]
  36. Parries G. S., Hokin-Neaverson M. Inhibition of phosphatidylinositol synthase and other membrane-associated enzymes by stereoisomers of hexachlorocyclohexane. J Biol Chem. 1985 Mar 10;260(5):2687–2693. [PubMed] [Google Scholar]
  37. Pinelli E., Cambon C., Tronchère H., Chap H., Teissié J., Pipy B. Ca(2+)-dependent activation of phospholipases C and D from mouse peritoneal macrophages by a selective trigger of Ca2+ influx, gamma-hexachlorocyclohexane. Biochem Biophys Res Commun. 1994 Mar 15;199(2):699–705. doi: 10.1006/bbrc.1994.1285. [DOI] [PubMed] [Google Scholar]
  38. Pomés A., Frandsen A., Suñol C., Sanfeliu C., Rodríguez-Farré E., Schousboe A. Lindane cytotoxicity in cultured neocortical neurons is ameliorated by GABA and flunitrazepam. J Neurosci Res. 1994 Dec 15;39(6):663–668. doi: 10.1002/jnr.490390606. [DOI] [PubMed] [Google Scholar]
  39. Pulido J. A., del Hoyo N., Pérez-Albarsanz M. A. The effects of different hexachlorocyclohexanes and cyclodienes on glucose uptake and inositol phospholipid synthesis in rat brain cortex. Life Sci. 1992;50(21):1585–1596. doi: 10.1016/0024-3205(92)90444-t. [DOI] [PubMed] [Google Scholar]
  40. Qin Z., Szabo G., Cafiso D. S. Anesthetics reduce the magnitude of the membrane dipole potential. Measurements in lipid vesicles using voltage-sensitive spin probes. Biochemistry. 1995 Apr 25;34(16):5536–5543. doi: 10.1021/bi00016a027. [DOI] [PubMed] [Google Scholar]
  41. Silvestroni L., Menditto A. Calcium uptake in human spermatozoa: characterization and mechanisms. Arch Androl. 1989;23(2):87–96. doi: 10.3109/01485018908986829. [DOI] [PubMed] [Google Scholar]
  42. Simonich S. L., Hites R. A. Global distribution of persistent organochlorine compounds. Science. 1995 Sep 29;269(5232):1851–1854. doi: 10.1126/science.7569923. [DOI] [PubMed] [Google Scholar]
  43. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tsien R., Pozzan T. Measurement of cytosolic free Ca2+ with quin2. Methods Enzymol. 1989;172:230–262. doi: 10.1016/s0076-6879(89)72017-6. [DOI] [PubMed] [Google Scholar]
  45. Tusell J. M., Barron S., Serratosa J. Anticonvulsant activity of calmodulin antagonist W-7 in convulsions induced by lindane and BayK-8644: effects in c-fos expression. Neurotoxicology. 1994 Fall;15(3):751–756. [PubMed] [Google Scholar]
  46. Walensky L. D., Snyder S. H. Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm. J Cell Biol. 1995 Aug;130(4):857–869. doi: 10.1083/jcb.130.4.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weisenburger D. D. Human health effects of agrichemical use. Hum Pathol. 1993 Jun;24(6):571–576. doi: 10.1016/0046-8177(93)90234-8. [DOI] [PubMed] [Google Scholar]
  48. Wistrom C. A., Meizel S. Evidence suggesting involvement of a unique human sperm steroid receptor/Cl- channel complex in the progesterone-initiated acrosome reaction. Dev Biol. 1993 Oct;159(2):679–690. doi: 10.1006/dbio.1993.1274. [DOI] [PubMed] [Google Scholar]
  49. Wolff G. L., Roberts D. W., Morrissey R. L., Greenman D. L., Allen R. R., Campbell W. L., Bergman H., Nesnow S., Frith C. H. Tumorigenic responses to lindane in mice: potentiation by a dominant mutation. Carcinogenesis. 1987 Dec;8(12):1889–1897. doi: 10.1093/carcin/8.12.1889. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES