Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 1;321(Pt 3):707–712. doi: 10.1042/bj3210707

Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle.

G Dimitriadis 1, B Leighton 1, M Parry-Billings 1, S Sasson 1, M Young 1, U Krause 1, S Bevan 1, T Piva 1, G Wegener 1, E A Newsholme 1
PMCID: PMC1218126  PMID: 9032457

Abstract

GENBANK/dy examines the mechanisms of glucocorticoid-induced insulin resistance in rat soleus muscle. Glucocorticoid excess was induced by administration of dexamethasone to rats for 5 days. Dexamethasone decreased the sensitivity of 3-O-methylglucose transport, 2-deoxyglucose phosphorylation, glycogen synthesis and glucose oxidation to insulin. The total content of GLUT4 glucose transporters was not decreased by dexamethasone; however, the increase in these transporters in the plasma membrane in response to insulin (100 m-units/litre) was lessened. In contrast, the sensitivity of lactate formation to insulin was normal. The content of 2-deoxyglucose in the dexamethasone-treated muscle was decreased at 100 m-units/litre insulin, while the contents of glucose 6-phosphate and fructose 2,6-bisphosphate were normal at all concentrations of insulin studied. The maximal activity of hexokinase in the soleus muscle was not affected by dexamethasone; however, inhibition of this enzyme by glucose 6-phosphate was decreased. These results suggest the following. (1) Glucocorticoid excess causes insulin resistance in skeletal muscle by directly inhibiting the translocation of the GLUT4 glucose transporters to the plasma membrane in response to insulin; since the activity of hexokinase is not affected, the changes in the sensitivity of glucose phosphorylation to insulin seen under these conditions are secondary to those in glucose transport. (2) The sensitivity of glycogen synthesis and glucose oxidation to insulin is decreased, but that of glycolysis is not affected: a redistribution of glucose away from the pathway of glycogen synthesis and glucose oxidation could maintain a normal rate of lactate formation although the rate of glucose transport is decreased.

Full Text

The Full Text of this article is available as a PDF (356.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron A. D., Brechtel G., Wallace P., Edelman S. V. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol. 1988 Dec;255(6 Pt 1):E769–E774. doi: 10.1152/ajpendo.1988.255.6.E769. [DOI] [PubMed] [Google Scholar]
  2. Baron A. D., Wallace P., Brechtel G. In vivo regulation of non-insulin-mediated and insulin-mediated glucose uptake by cortisol. Diabetes. 1987 Nov;36(11):1230–1237. doi: 10.2337/diab.36.11.1230. [DOI] [PubMed] [Google Scholar]
  3. Block N. E., Buse M. G. Effects of hypercortisolemia and diabetes on skeletal muscle insulin receptor function in vitro and in vivo. Am J Physiol. 1989 Jan;256(1 Pt 1):E39–E48. doi: 10.1152/ajpendo.1989.256.1.E39. [DOI] [PubMed] [Google Scholar]
  4. Bowes S. B., Benn J. J., Scobie I. N., Umpleby A. M., Lowy C., Sönksen P. H. Glucose metabolism in patients with Cushing's syndrome. Clin Endocrinol (Oxf) 1991 Apr;34(4):311–316. doi: 10.1111/j.1365-2265.1991.tb03772.x. [DOI] [PubMed] [Google Scholar]
  5. Carter-Su C., Okamoto K. Effect of insulin and glucocorticoids on glucose transporters in rat adipocytes. Am J Physiol. 1987 Apr;252(4 Pt 1):E441–E453. doi: 10.1152/ajpendo.1987.252.4.E441. [DOI] [PubMed] [Google Scholar]
  6. Challiss R. A., Arch J. R., Newsholme E. A. The rate of substrate cycling between fructose 6-phosphate and fructose 1,6-bisphosphate in skeletal muscle. Biochem J. 1984 Jul 1;221(1):153–161. doi: 10.1042/bj2210153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chan T. M. The permissive effects of glucocorticoid on hepatic gluconeogenesis. Glucagon stimulation of glucose-suppressed gluconeogenesis and inhibition of 6-phosphofructo-1-kinase in hepatocytes from fasted rats. J Biol Chem. 1984 Jun 25;259(12):7426–7432. [PubMed] [Google Scholar]
  8. Consoli A., Nurjahan N., Gerich J. E., Mandarino L. J. Skeletal muscle is a major site of lactate uptake and release during hyperinsulinemia. Metabolism. 1992 Feb;41(2):176–179. doi: 10.1016/0026-0495(92)90148-4. [DOI] [PubMed] [Google Scholar]
  9. Cuendet G. S., Loten E. G., Jeanrenaud B., Renold A. E. Decreased basal, noninsulin-stimulated glucose uptake and metabolism by skeletal soleus muscle isolated from obese-hyperglycemic (ob/ob) mice. J Clin Invest. 1976 Nov;58(5):1078–1088. doi: 10.1172/JCI108559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Feo P., Perriello G., Torlone E., Ventura M. M., Fanelli C., Santeusanio F., Brunetti P., Gerich J. E., Bolli G. B. Contribution of cortisol to glucose counterregulation in humans. Am J Physiol. 1989 Jul;257(1 Pt 1):E35–E42. doi: 10.1152/ajpendo.1989.257.1.E35. [DOI] [PubMed] [Google Scholar]
  11. Dimitriadis G., Parry-Billings M., Bevan S., Dunger D., Piva T., Krause U., Wegener G., Newsholme E. A. Effects of insulin-like growth factor I on the rates of glucose transport and utilization in rat skeletal muscle in vitro. Biochem J. 1992 Jul 1;285(Pt 1):269–274. doi: 10.1042/bj2850269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dimitriadis G., Parry-Billings M., Dunger D., Bevan S., Colquhoun A., Taylor A., Calder P., Krause U., Wegener G., Newsholme E. A. Effects of in-vivo administration of insulin-like growth factor-I on the rate of glucose utilization in the soleus muscle of the rat. J Endocrinol. 1992 Apr;133(1):37–43. doi: 10.1677/joe.0.1330037. [DOI] [PubMed] [Google Scholar]
  13. Dimitriadis G., Parry-Billings M., Leighton B., Piva T., Dunger D., Calder P., Bond J., Newsholme E. Studies on the effects of growth hormone administration in vivo on the rates of glucose transport and utilization in rat skeletal muscle. Eur J Clin Invest. 1994 Mar;24(3):161–165. doi: 10.1111/j.1365-2362.1994.tb00982.x. [DOI] [PubMed] [Google Scholar]
  14. Engel P. C., Jones J. B. Causes and elimination of erratic blanks in enzymatic metabolite assays involving the use of NAD+ in alkaline hydrazine buffers: improved conditions for the assay of L-glutamate, L-lactate, and other metabolites. Anal Biochem. 1978 Aug 1;88(2):475–484. doi: 10.1016/0003-2697(78)90447-5. [DOI] [PubMed] [Google Scholar]
  15. Espinal J., Dohm G. L., Newsholme E. A. Sensitivity to insulin of glycolysis and glycogen synthesis of isolated soleus-muscle strips from sedentary, exercised and exercise-trained rats. Biochem J. 1983 May 15;212(2):453–458. doi: 10.1042/bj2120453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Exton J. H. Gluconeogenesis. Metabolism. 1972 Oct;21(10):945–990. doi: 10.1016/0026-0495(72)90028-5. [DOI] [PubMed] [Google Scholar]
  17. Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grunfeld C., Baird K., Van Obberghen E., Kahn C. R. Glucocorticoid-induced insulin resistance in vitro: evidence for both receptor and postreceptor defects. Endocrinology. 1981 Nov;109(5):1723–1730. doi: 10.1210/endo-109-5-1723. [DOI] [PubMed] [Google Scholar]
  19. Guillaume-Gentil C., Assimacopoulos-Jeannet F., Jeanrenaud B. Involvement of non-esterified fatty acid oxidation in glucocorticoid-induced peripheral insulin resistance in vivo in rats. Diabetologia. 1993 Oct;36(10):899–906. doi: 10.1007/BF02374470. [DOI] [PubMed] [Google Scholar]
  20. Haber R. S., Weinstein S. P. Role of glucose transporters in glucocorticoid-induced insulin resistance. GLUT4 isoform in rat skeletal muscle is not decreased by dexamethasone. Diabetes. 1992 Jun;41(6):728–735. doi: 10.2337/diab.41.6.728. [DOI] [PubMed] [Google Scholar]
  21. Hammerstedt R. H. A rapid method for isolating glucose metabolites involved in substrate cycling. Anal Biochem. 1980 Dec;109(2):443–448. doi: 10.1016/0003-2697(80)90675-2. [DOI] [PubMed] [Google Scholar]
  22. Horner H. C., Munck A., Lienhard G. E. Dexamethasone causes translocation of glucose transporters from the plasma membrane to an intracellular site in human fibroblasts. J Biol Chem. 1987 Dec 25;262(36):17696–17702. [PubMed] [Google Scholar]
  23. KIPINIS D. M. Regulation of glucose uptake by muscle: functional significance of permeability and phosphorylating activity. Ann N Y Acad Sci. 1959 Sep 25;82:354–365. doi: 10.1111/j.1749-6632.1959.tb44916.x. [DOI] [PubMed] [Google Scholar]
  24. Klip A., Pâquet M. R. Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care. 1990 Mar;13(3):228–243. doi: 10.2337/diacare.13.3.228. [DOI] [PubMed] [Google Scholar]
  25. Krause U., Wegener G. Control of glycolysis in vertebrate skeletal muscle during exercise. Am J Physiol. 1996 Apr;270(4 Pt 2):R821–R829. doi: 10.1152/ajpregu.1996.270.4.R821. [DOI] [PubMed] [Google Scholar]
  26. Leighton B., Budohoski L., Lozeman F. J., Challiss R. A., Newsholme E. A. The effect of prostaglandins E1, E2 and F2 alpha and indomethacin on the sensitivity of glycolysis and glycogen synthesis to insulin in stripped soleus muscles of the rat. Biochem J. 1985 Apr 1;227(1):337–340. doi: 10.1042/bj2270337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Leighton B., Challiss R. A., Lozeman F. J., Newsholme E. A. Effects of dexamethasone treatment on insulin-stimulated rates of glycolysis and glycogen synthesis in isolated incubated skeletal muscles of the rat. Biochem J. 1987 Sep 1;246(2):551–554. doi: 10.1042/bj2460551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Levy-Toledano R., Caro L. H., Hindman N., Taylor S. I. Streptavidin blotting: a sensitive technique to study cell surface proteins; application to investigate autophosphorylation and endocytosis of biotin-labeled insulin receptors. Endocrinology. 1993 Oct;133(4):1803–1808. doi: 10.1210/endo.133.4.8404622. [DOI] [PubMed] [Google Scholar]
  29. MORGAN H. E., REGEN D. M., HENDERSON M. J., SAWYER T. K., PARK C. R. Regulation of glucose uptake in muscle. VI. Effects of hypophysectomy, adrenalectomy, growth hormone, hydrocortisone, and insulin on glucose transport and phosphorylation in the perfused rat heart. J Biol Chem. 1961 Aug;236:2162–2168. [PubMed] [Google Scholar]
  30. Malchoff D. M., Maloff B. L., Livingston J. N., Lockwood D. H. Influence of dexamethasone on insulin action: inhibition of basal and insulin-stimulated hexose transport is dependent on length of exposure in vitro. Endocrinology. 1982 Jun;110(6):2081–2087. doi: 10.1210/endo-110-6-2081. [DOI] [PubMed] [Google Scholar]
  31. NARAHARA H. T., OZAND P. Studies of tissue permeability. IX. The effect of insulin on the penetration of 3-methylglucose-H3 in frog muscle. J Biol Chem. 1963 Jan;238:40–49. [PubMed] [Google Scholar]
  32. Nosadini R., Del Prato S., Tiengo A., Valerio A., Muggeo M., Opocher G., Mantero F., Duner E., Marescotti C., Mollo F. Insulin resistance in Cushing's syndrome. J Clin Endocrinol Metab. 1983 Sep;57(3):529–536. doi: 10.1210/jcem-57-3-529. [DOI] [PubMed] [Google Scholar]
  33. Olefsky J. M. Effect of dexamethasone on insulin binding, glucose transport, and glucose oxidation of isolated rat adipocytes. J Clin Invest. 1975 Dec;56(6):1499–1508. doi: 10.1172/JCI108231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Parry-Billings M., Leighton B., Dimitriadis G. D., Bond J., Newsholme E. A. Effects of physiological and pathological levels of glucocorticoids on skeletal muscle glutamine metabolism in the rat. Biochem Pharmacol. 1990 Sep 1;40(5):1145–1148. doi: 10.1016/0006-2952(90)90505-f. [DOI] [PubMed] [Google Scholar]
  35. Rizza R. A., Mandarino L. J., Gerich J. E. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action. J Clin Endocrinol Metab. 1982 Jan;54(1):131–138. doi: 10.1210/jcem-54-1-131. [DOI] [PubMed] [Google Scholar]
  36. Shetty M., Loeb J. N., Vikstrom K., Ismail-Beigi F. Rapid activation of GLUT-1 glucose transporter following inhibition of oxidative phosphorylation in clone 9 cells. J Biol Chem. 1993 Aug 15;268(23):17225–17232. [PubMed] [Google Scholar]
  37. Simmons P. S., Miles J. M., Gerich J. E., Haymond M. W. Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. J Clin Invest. 1984 Feb;73(2):412–420. doi: 10.1172/JCI111227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sistare F. D., Haynes R. C., Jr Acute stimulation by glucocorticoids of gluconeogenesis from lactate/pyruvate in isolated hepatocytes from normal and adrenalectomized rats. J Biol Chem. 1985 Oct 15;260(23):12754–12760. [PubMed] [Google Scholar]
  39. Tanaka H., Akama H., Ichikawa Y., Homma M., Makino I. Glucocorticoid receptor and inhibition of 3-O-methyl-D-glucose uptake by glucocorticoids in peripheral blood leukocytes from normal humans: correlation between receptor level and hormone effect in vitro. Acta Endocrinol (Copenh) 1992 Jan;126(1):29–36. doi: 10.1530/acta.0.1260029. [DOI] [PubMed] [Google Scholar]
  40. Tappy L., Randin D., Vollenweider P., Vollenweider L., Paquot N., Scherrer U., Schneiter P., Nicod P., Jéquier E. Mechanisms of dexamethasone-induced insulin resistance in healthy humans. J Clin Endocrinol Metab. 1994 Oct;79(4):1063–1069. doi: 10.1210/jcem.79.4.7962275. [DOI] [PubMed] [Google Scholar]
  41. Wegener G., Krause U., Thuy M. Fructose 2,6-bisphosphate and glycolytic flux in skeletal muscle of swimming frog. FEBS Lett. 1990 Jul 16;267(2):257–260. doi: 10.1016/0014-5793(90)80939-g. [DOI] [PubMed] [Google Scholar]
  42. Wertheimer E., Sasson S., Cerasi E., Ben-Neriah Y. The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2525–2529. doi: 10.1073/pnas.88.6.2525. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES