Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 1;321(Pt 3):737–741. doi: 10.1042/bj3210737

High specificity of human secretory class II phospholipase A2 for phosphatidic acid.

Y Snitko 1, E T Yoon 1, W Cho 1
PMCID: PMC1218130  PMID: 9032461

Abstract

Lysophosphatidic acid (LPA) is a potent lipid second messenger which stimulates platelet aggregation, cell proliferation and smooth-muscle contraction. The phospholipase A2 (PLA2)-catalysed hydrolysis of phosphatidic acid (PA) is thought to be a primary synthetic route for LPA. Of the multiple forms of PLA2 present in human tissues, human secretory class-II PLA2 (hs-PLA2) has been implicated in the production of LPA from platelets and whole blood cells challenged with inflammatory stimuli. To explore further the possibility that hs-PLA2 is involved in the production of LPA, we rigorously measured the phospholipid head group specificity of hs-PLA2 by a novel PLA2 kinetic system using polymerized mixed liposomes. Kinetic analysis of recombinant hs-PLA2 demonstrates that hs-PLA2 strongly prefers PA as substrate over other phospholipids found in the mammalian plasma membrane including phosphatidylserine (PS), phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The order of preference is PA >> PE approximately PS > PC. To identify amino acid residues of hs-PLA2 that are involved in its unique substrate specificity, we mutated two residues, Glu-56 and Lys-69, which were shown to interact with the phospholipid head group in the X-ray-crystallographic structure of the hs-PLA2-transition-state-analogue complex. The K69Y mutant showed selective inactivation toward PA whereas the E56K mutant displayed a most pronounced inactivation to PE. Thus it appears that Lys-69 is at least partially involved in the PA specificity of hs-PLA2 and Glu-56 in the distinction between PE and PC. In conjunction with a recent cell study [Fourcade, Simon, Viode, Rugani, Leballe, Ragab, Fournie, Sarda and Chap (1995) Cell 80, 919-927], these studies suggest that hs-PLA2 can rapidly hydrolyse PA molecules exposed to the outer layer of cell-derived microvesicles and thereby produce LPA.

Full Text

The Full Text of this article is available as a PDF (265.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Michell R. H. Accumulation of 1,2-diacylglycerol in the plasma membrane may lead to echinocyte transformation of erythrocytes. Nature. 1975 Nov 27;258(5533):348–349. doi: 10.1038/258348a0. [DOI] [PubMed] [Google Scholar]
  2. Allan D., Thomas P. Ca2+-induced biochemical changes in human erythrocytes and their relation to microvesiculation. Biochem J. 1981 Sep 15;198(3):433–440. doi: 10.1042/bj1980433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Billah M. M., Lapetina E. G., Cuatrecasas P. Phospholipase A2 activity specific for phosphatidic acid. A possible mechanism for the production of arachidonic acid in platelets. J Biol Chem. 1981 Jun 10;256(11):5399–5403. [PubMed] [Google Scholar]
  4. Chang C. P., Zhao J., Wiedmer T., Sims P. J. Contribution of platelet microparticle formation and granule secretion to the transmembrane migration of phosphatidylserine. J Biol Chem. 1993 Apr 5;268(10):7171–7178. [PubMed] [Google Scholar]
  5. Comfurius P., Senden J. M., Tilly R. H., Schroit A. J., Bevers E. M., Zwaal R. F. Loss of membrane phospholipid asymmetry in platelets and red cells may be associated with calcium-induced shedding of plasma membrane and inhibition of aminophospholipid translocase. Biochim Biophys Acta. 1990 Jul 24;1026(2):153–160. doi: 10.1016/0005-2736(90)90058-v. [DOI] [PubMed] [Google Scholar]
  6. Comfurius P., Zwaal R. F. The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography. Biochim Biophys Acta. 1977 Jul 20;488(1):36–42. doi: 10.1016/0005-2760(77)90120-5. [DOI] [PubMed] [Google Scholar]
  7. DAVIDSON F. M., LONG C. The structure of the naturally occurring phosphoglycerides. 4. Action of cabbage-leaf phospholipase D on ovolecithin and related substances. Biochem J. 1958 Jul;69(3):458–466. doi: 10.1042/bj0690458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dennis E. A. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994 May 6;269(18):13057–13060. [PubMed] [Google Scholar]
  9. Diez E., Louis-Flamberg P., Hall R. H., Mayer R. J. Substrate specificities and properties of human phospholipases A2 in a mixed vesicle model. J Biol Chem. 1992 Sep 15;267(26):18342–18348. [PubMed] [Google Scholar]
  10. Dua R., Wu S. K., Cho W. A structure-function study of bovine pancreatic phospholipase A2 using polymerized mixed liposomes. J Biol Chem. 1995 Jan 6;270(1):263–268. doi: 10.1074/jbc.270.1.263. [DOI] [PubMed] [Google Scholar]
  11. Fourcade O., Simon M. F., Viodé C., Rugani N., Leballe F., Ragab A., Fournié B., Sarda L., Chap H. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell. 1995 Mar 24;80(6):919–927. doi: 10.1016/0092-8674(95)90295-3. [DOI] [PubMed] [Google Scholar]
  12. Gelb M. H., Jain M. K., Hanel A. M., Berg O. G. Interfacial enzymology of glycerolipid hydrolases: lessons from secreted phospholipases A2. Annu Rev Biochem. 1995;64:653–688. doi: 10.1146/annurev.bi.64.070195.003253. [DOI] [PubMed] [Google Scholar]
  13. Gerrard J. M., Robinson P. Identification of the molecular species of lysophosphatidic acid produced when platelets are stimulated by thrombin. Biochim Biophys Acta. 1989 Feb 20;1001(3):282–285. doi: 10.1016/0005-2760(89)90112-4. [DOI] [PubMed] [Google Scholar]
  14. Hidi R., Vargaftig B. B., Touqui L. Increased synthesis and secretion of a 14-kDa phospholipase A2 by guinea pig alveolar macrophages. Dissociation from arachidonic acid liberation and modulation by dexamethasone. J Immunol. 1993 Nov 15;151(10):5613–5623. [PubMed] [Google Scholar]
  15. Jain M. K., Berg O. G. The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting. Biochim Biophys Acta. 1989 Apr 3;1002(2):127–156. doi: 10.1016/0005-2760(89)90281-6. [DOI] [PubMed] [Google Scholar]
  16. Kramer R. M., Hession C., Johansen B., Hayes G., McGray P., Chow E. P., Tizard R., Pepinsky R. B. Structure and properties of a human non-pancreatic phospholipase A2. J Biol Chem. 1989 Apr 5;264(10):5768–5775. [PubMed] [Google Scholar]
  17. Kudo I., Murakami M., Hara S., Inoue K. Mammalian non-pancreatic phospholipases A2. Biochim Biophys Acta. 1993 Nov 3;1170(3):217–231. doi: 10.1016/0005-2760(93)90003-r. [DOI] [PubMed] [Google Scholar]
  18. Lee B. I., Yoon E. T., Cho W. Roles of surface hydrophobic residues in the interfacial catalysis of bovine pancreatic phospholipase A2. Biochemistry. 1996 Apr 2;35(13):4231–4240. doi: 10.1021/bi9524777. [DOI] [PubMed] [Google Scholar]
  19. Mayer R. J., Marshall L. A. New insights on mammalian phospholipase A2(s); comparison of arachidonoyl-selective and -nonselective enzymes. FASEB J. 1993 Feb 1;7(2):339–348. doi: 10.1096/fasebj.7.2.8440410. [DOI] [PubMed] [Google Scholar]
  20. Moolenaar W. H. Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem. 1995 Jun 2;270(22):12949–12952. doi: 10.1074/jbc.270.22.12949. [DOI] [PubMed] [Google Scholar]
  21. Murakami M., Kudo I., Umeda M., Matsuzawa A., Takeda M., Komada M., Fujimori Y., Takahashi K., Inoue K. Detection of three distinct phospholipases A2 in cultured mast cells. J Biochem. 1992 Feb;111(2):175–181. doi: 10.1093/oxfordjournals.jbchem.a123733. [DOI] [PubMed] [Google Scholar]
  22. Nakamaye K. L., Eckstein F. Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Res. 1986 Dec 22;14(24):9679–9698. doi: 10.1093/nar/14.24.9679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Othman R., Worrall A., Wilton D. C. Some properties of a human group II phospholipase A2 expressed from a synthetic gene in E. coli. Biochem Soc Trans. 1994 Aug;22(3):317S–317S. doi: 10.1042/bst022317s. [DOI] [PubMed] [Google Scholar]
  24. Scott D. L., Sigler P. B. Structure and catalytic mechanism of secretory phospholipases A2. Adv Protein Chem. 1994;45:53–88. doi: 10.1016/s0065-3233(08)60638-5. [DOI] [PubMed] [Google Scholar]
  25. Scott D. L., White S. P., Browning J. L., Rosa J. J., Gelb M. H., Sigler P. B. Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. Science. 1991 Nov 15;254(5034):1007–1010. doi: 10.1126/science.1948070. [DOI] [PubMed] [Google Scholar]
  26. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  27. Thomson F. J., Clark M. A. Purification of a phosphatidic-acid-hydrolysing phospholipase A2 from rat brain. Biochem J. 1995 Feb 15;306(Pt 1):305–309. doi: 10.1042/bj3060305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vadas P., Pruzanski W. Role of secretory phospholipases A2 in the pathobiology of disease. Lab Invest. 1986 Oct;55(4):391–404. [PubMed] [Google Scholar]
  29. Verkleij A. J., Zwaal R. F., Roelofsen B., Comfurius P., Kastelijn D., van Deenen L. L. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta. 1973 Oct 11;323(2):178–193. doi: 10.1016/0005-2736(73)90143-0. [DOI] [PubMed] [Google Scholar]
  30. White S. P., Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science. 1990 Dec 14;250(4987):1560–1563. doi: 10.1126/science.2274787. [DOI] [PubMed] [Google Scholar]
  31. Wright G. W., Ooi C. E., Weiss J., Elsbach P. Purification of a cellular (granulocyte) and an extracellular (serum) phospholipase A2 that participate in the destruction of Escherichia coli in a rabbit inflammatory exudate. J Biol Chem. 1990 Apr 25;265(12):6675–6681. [PubMed] [Google Scholar]
  32. Wu S. K., Cho W. A continuous fluorometric assay for phospholipases using polymerized mixed liposomes. Anal Biochem. 1994 Aug 15;221(1):152–159. doi: 10.1006/abio.1994.1391. [DOI] [PubMed] [Google Scholar]
  33. Wu S. K., Cho W. Use of polymerized mixed liposomes to study interactions of phospholipase A2 with membranes. Biochemistry. 1993 Dec 21;32(50):13902–13908. doi: 10.1021/bi00213a020. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES