Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 1;321(Pt 3):743–750. doi: 10.1042/bj3210743

One-electron oxidation pathway of peroxynitrite decomposition in human blood plasma: evidence for the formation of protein tryptophan-centred radicals.

D Pietraforte 1, M Minetti 1
PMCID: PMC1218131  PMID: 9032462

Abstract

Exposure of human blood plasma to peroxynitrite in the presence of 3,5-dibromo-4-nitrosobenzenesulphonic acid (DBNBS) resulted in the trapping of a strongly immobilized nitroxide radical adduct. The adduct was due to protein-centred radicals derived not only from serum albumin but also from other major plasma proteins (fibrinogen, IgG, alpha1-antitrypsin and transferrin). Urate significantly protected plasma from the peroxynitrite-induced DBNBS-plasma protein adduct, whereas ascorbate and glutathione were protective at concentrations exceeding those usually found in plasma. Alkylation of plasma -SH groups did not affect the intensity of DBNBS-plasma protein adduct, whereas bicarbonate increased its formation, thus showing a pro-oxidant effect. The DBNBS-plasma protein adduct provided little structural information, but subsequent non-specific-protease treatment resulted in the detection of an isotropic three-line spectrum, indicating the trapping of radicals centred on a tertiary carbon. The nitrogen hyperfine coupling constant of this adduct and its superhyperfine structure were similar to those of DBNBS-tryptophan peptides with the alpha-amino group of tryptophan linked in the amide bond, consistent with a radical adduct formed at C-3 of the indole ring of tryptophan-containing peptides. DBNBS was unable to trap radicals derived from peroxynitrite-treated tyrosine or tyrosine-containing peptides. Methionine treated with peroxynitrite resulted in the trapping of at least two DBNBS-methionine adducts with hyperfine structures different from that of protease-treated DBNBS-plasma proteins. These results demonstrate that peroxynitrite induced in blood plasma the formation of protein radicals centred on tryptophan residues and underline the relevance of the one-electron oxidation pathway of peroxynitrite decomposition in biological fluids.

Full Text

The Full Text of this article is available as a PDF (600.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez B., Rubbo H., Kirk M., Barnes S., Freeman B. A., Radi R. Peroxynitrite-dependent tryptophan nitration. Chem Res Toxicol. 1996 Mar;9(2):390–396. doi: 10.1021/tx950133b. [DOI] [PubMed] [Google Scholar]
  2. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beckman J. S., Ischiropoulos H., Zhu L., van der Woerd M., Smith C., Chen J., Harrison J., Martin J. C., Tsai M. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys. 1992 Nov 1;298(2):438–445. doi: 10.1016/0003-9861(92)90432-v. [DOI] [PubMed] [Google Scholar]
  4. Bredt D. S., Snyder S. H. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195. doi: 10.1146/annurev.bi.63.070194.001135. [DOI] [PubMed] [Google Scholar]
  5. Buchanan C. E., Gustafson A. Mutagenesis and mapping of the gene for a sporulation-specific penicillin-binding protein in Bacillus subtilis. J Bacteriol. 1992 Aug;174(16):5430–5435. doi: 10.1128/jb.174.16.5430-5435.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies M. J., Fu S., Dean R. T. Protein hydroperoxides can give rise to reactive free radicals. Biochem J. 1995 Jan 15;305(Pt 2):643–649. doi: 10.1042/bj3050643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies M. J., Gilbert B. C., Haywood R. M. Radical-induced damage to proteins: e.s.r. spin-trapping studies. Free Radic Res Commun. 1991;15(2):111–127. doi: 10.3109/10715769109049131. [DOI] [PubMed] [Google Scholar]
  8. Gaboury J., Woodman R. C., Granger D. N., Reinhardt P., Kubes P. Nitric oxide prevents leukocyte adherence: role of superoxide. Am J Physiol. 1993 Sep;265(3 Pt 2):H862–H867. doi: 10.1152/ajpheart.1993.265.3.H862. [DOI] [PubMed] [Google Scholar]
  9. Gatti R. M., Radi R., Augusto O. Peroxynitrite-mediated oxidation of albumin to the protein-thiyl free radical. FEBS Lett. 1994 Jul 18;348(3):287–290. doi: 10.1016/0014-5793(94)00625-3. [DOI] [PubMed] [Google Scholar]
  10. Gunther M. R., Kelman D. J., Corbett J. T., Mason R. P. Self-peroxidation of metmyoglobin results in formation of an oxygen-reactive tryptophan-centered radical. J Biol Chem. 1995 Jul 7;270(27):16075–16081. doi: 10.1074/jbc.270.27.16075. [DOI] [PubMed] [Google Scholar]
  11. Hiramoto K., Hasegawa Y., Kikugawa K. Appearance of ESR signals by the reaction of 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS) and non-radical biological components. Free Radic Res. 1994 Oct;21(5):341–349. doi: 10.3109/10715769409056586. [DOI] [PubMed] [Google Scholar]
  12. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  13. Ischiropoulos H., Zhu L., Chen J., Tsai M., Martin J. C., Smith C. D., Beckman J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys. 1992 Nov 1;298(2):431–437. doi: 10.1016/0003-9861(92)90431-u. [DOI] [PubMed] [Google Scholar]
  14. Ischiropoulos H., al-Mehdi A. B. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett. 1995 May 15;364(3):279–282. doi: 10.1016/0014-5793(95)00307-u. [DOI] [PubMed] [Google Scholar]
  15. Koppenol W. H., Moreno J. J., Pryor W. A., Ischiropoulos H., Beckman J. S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol. 1992 Nov-Dec;5(6):834–842. doi: 10.1021/tx00030a017. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S., Sucher N. J., Loscalzo J., Singel D. J., Stamler J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364(6438):626–632. doi: 10.1038/364626a0. [DOI] [PubMed] [Google Scholar]
  18. Matheis G., Sherman M. P., Buckberg G. D., Haybron D. M., Young H. H., Ignarro L. J. Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol. 1992 Feb;262(2 Pt 2):H616–H620. doi: 10.1152/ajpheart.1992.262.2.H616. [DOI] [PubMed] [Google Scholar]
  19. Moncada S. The 1991 Ulf von Euler Lecture. The L-arginine: nitric oxide pathway. Acta Physiol Scand. 1992 Jul;145(3):201–227. doi: 10.1111/j.1748-1716.1992.tb09359.x. [DOI] [PubMed] [Google Scholar]
  20. Moreno J. J., Pryor W. A. Inactivation of alpha 1-proteinase inhibitor by peroxynitrite. Chem Res Toxicol. 1992 May-Jun;5(3):425–431. doi: 10.1021/tx00027a017. [DOI] [PubMed] [Google Scholar]
  21. Moro M. A., Darley-Usmar V. M., Lizasoain I., Su Y., Knowles R. G., Radomski M. W., Moncada S. The formation of nitric oxide donors from peroxynitrite. Br J Pharmacol. 1995 Oct;116(3):1999–2004. doi: 10.1111/j.1476-5381.1995.tb16404.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  23. Nazhat N. B., Yang G., Allen R. E., Blake D. R., Jones P. Does 3,5,dibromo-4-nitrosobenzene sulphonate spin trap superoxide radicals? Biochem Biophys Res Commun. 1990 Jan 30;166(2):807–812. doi: 10.1016/0006-291x(90)90881-m. [DOI] [PubMed] [Google Scholar]
  24. Noronha-Dutra A. A., Epperlein M. M., Woolf N. Reaction of nitric oxide with hydrogen peroxide to produce potentially cytotoxic singlet oxygen as a model for nitric oxide-mediated killing. FEBS Lett. 1993 Apr 19;321(1):59–62. doi: 10.1016/0014-5793(93)80621-z. [DOI] [PubMed] [Google Scholar]
  25. Ozawa T., Hanaki A. Spin-trapping of superoxide ion by a water-soluble, nitroso-aromatic spin-trap. Biochem Biophys Res Commun. 1986 Apr 29;136(2):657–664. doi: 10.1016/0006-291x(86)90491-2. [DOI] [PubMed] [Google Scholar]
  26. Pryor W. A., Jin X., Squadrito G. L. One- and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11173–11177. doi: 10.1073/pnas.91.23.11173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pryor W. A., Squadrito G. L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995 May;268(5 Pt 1):L699–L722. doi: 10.1152/ajplung.1995.268.5.L699. [DOI] [PubMed] [Google Scholar]
  28. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
  29. Radi R., Cosgrove T. P., Beckman J. S., Freeman B. A. Peroxynitrite-induced luminol chemiluminescence. Biochem J. 1993 Feb 15;290(Pt 1):51–57. doi: 10.1042/bj2900051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rubbo H., Radi R., Trujillo M., Telleri R., Kalyanaraman B., Barnes S., Kirk M., Freeman B. A. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem. 1994 Oct 21;269(42):26066–26075. [PubMed] [Google Scholar]
  31. Uppu R. M., Squadrito G. L., Pryor W. A. Acceleration of peroxynitrite oxidations by carbon dioxide. Arch Biochem Biophys. 1996 Mar 15;327(2):335–343. doi: 10.1006/abbi.1996.0131. [DOI] [PubMed] [Google Scholar]
  32. Van der Vliet A., Smith D., O'Neill C. A., Kaur H., Darley-Usmar V., Cross C. E., Halliwell B. Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem J. 1994 Oct 1;303(Pt 1):295–301. doi: 10.1042/bj3030295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vásquez-Vivar J., Santos A. M., Junqueira V. B., Augusto O. Peroxynitrite-mediated formation of free radicals in human plasma: EPR detection of ascorbyl, albumin-thiyl and uric acid-derived free radicals. Biochem J. 1996 Mar 15;314(Pt 3):869–876. doi: 10.1042/bj3140869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Watts B. P., Jr, Barnard M., Turrens J. F. Peroxynitrite-dependent chemiluminescence of amino acids, proteins, and intact cells. Arch Biochem Biophys. 1995 Mar 10;317(2):324–330. doi: 10.1006/abbi.1995.1170. [DOI] [PubMed] [Google Scholar]
  35. White C. R., Brock T. A., Chang L. Y., Crapo J., Briscoe P., Ku D., Bradley W. A., Gianturco S. H., Gore J., Freeman B. A. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1044–1048. doi: 10.1073/pnas.91.3.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. van der Vliet A., Eiserich J. P., O'Neill C. A., Halliwell B., Cross C. E. Tyrosine modification by reactive nitrogen species: a closer look. Arch Biochem Biophys. 1995 Jun 1;319(2):341–349. doi: 10.1006/abbi.1995.1303. [DOI] [PubMed] [Google Scholar]
  37. van der Vliet A., O'Neill C. A., Halliwell B., Cross C. E., Kaur H. Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. Evidence for hydroxyl radical production from peroxynitrite. FEBS Lett. 1994 Feb 14;339(1-2):89–92. doi: 10.1016/0014-5793(94)80391-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES