Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 1;321(Pt 3):751–757. doi: 10.1042/bj3210751

Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines.

G A Homandberg 1, F Hui 1, C Wen 1, C Purple 1, K Bewsey 1, H Koepp 1, K Huch 1, A Harris 1
PMCID: PMC1218132  PMID: 9032463

Abstract

Fibronectin fragments have both catabolic and anabolic activities toward articular cartilage explants in vitro. Whereas a 1 nM concentration of an N-terminal 29 kDa fibronectin fragment (Fn-f) increases the proteoglycan (PG) content of cartilage without induction of matrix metalloproteinases (MMPs), 0.1-1 microM Fn-f temporarily suppresses PG synthesis and enhances MMP release. The higher concentrations cause an initially rapid PG depletion during the first week of culture, followed by much slower PG loss and gradually increasing rates of PG synthesis. To test for the involvement of mediators, human articular cartilage was cultured with Fn-f, and conditioned media were assayed for selected cytokines and factors. With 1 nM Fn-f, the release of the anabolic factors, insulin growth factor-I and transforming growth factor beta1, from cultured cartilage was enhanced by 50-100% during the entire 28-day culture period and this was associated with both supernormal rates of PG synthesis and PG content. However, the higher concentrations of Fn-f additionally enhanced release, by at least 10-fold, of the cytokines, tumour necrosis factor alpha, interleukin-1alpha, interleukin-1beta and interleukin-6 while causing depletion of cartilage PG. Release of tumour necrosis factor alpha, interleukin 1beta and interleukin 1alpha peaked at days 2, 3 and 9 during or slightly after the period of maximal PG depletion and decreased to control levels by days 7, 7 and 21 respectively, whereas release of interleukin 6 was enhanced throughout the culture period. Neutralizing antibodies to the catabolic cytokines reduced Fn-f-mediated MMP-3 release and suppression of PG synthesis. The temporal aspects of this interplay between catabolic and anabolic factors are consistent with the kinetics of Fn-f-mediated cartilage damage and attempted repair and may be relevant to cartilage damage and repair in vivo.

Full Text

The Full Text of this article is available as a PDF (299.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews H. J., Bunning R. A., Plumpton T. A., Clark I. M., Russell R. G., Cawston T. E. Inhibition of interleukin-1-induced collagenase production in human articular chondrocytes in vitro by recombinant human interferon-gamma. Arthritis Rheum. 1990 Nov;33(11):1733–1738. doi: 10.1002/art.1780331119. [DOI] [PubMed] [Google Scholar]
  2. Arend W. P., Dayer J. M. Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheum. 1990 Mar;33(3):305–315. doi: 10.1002/art.1780330302. [DOI] [PubMed] [Google Scholar]
  3. Bartholomew J. S., Handley C. J., Lowther D. A. The effects of trypsin treatment on proteoglycan biosynthesis by bovine articular cartilage. Biochem J. 1985 Apr 15;227(2):429–437. doi: 10.1042/bj2270429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bartholomew J. S., Lowther D. A., Handley C. J. Changes in proteoglycan biosynthesis following leukocyte elastase treatment of bovine articular cartilage in culture. Arthritis Rheum. 1984 Aug;27(8):905–912. doi: 10.1002/art.1780270810. [DOI] [PubMed] [Google Scholar]
  5. Brennan F. M., Chantry D., Jackson A., Maini R., Feldmann M. Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet. 1989 Jul 29;2(8657):244–247. doi: 10.1016/s0140-6736(89)90430-3. [DOI] [PubMed] [Google Scholar]
  6. Bunning R. A., Russell R. G., Van Damme J. Independent induction of interleukin 6 and prostaglandin E2 by interleukin 1 in human articular chondrocytes. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1163–1170. doi: 10.1016/0006-291x(90)90988-y. [DOI] [PubMed] [Google Scholar]
  7. Chandrasekhar S., Harvey A. K. Transforming growth factor-beta is a potent inhibitor of IL-1 induced protease activity and cartilage proteoglycan degradation. Biochem Biophys Res Commun. 1988 Dec 30;157(3):1352–1359. doi: 10.1016/s0006-291x(88)81024-6. [DOI] [PubMed] [Google Scholar]
  8. Dinarello C. A., Cannon J. G., Wolff S. M., Bernheim H. A., Beutler B., Cerami A., Figari I. S., Palladino M. A., Jr, O'Connor J. V. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med. 1986 Jun 1;163(6):1433–1450. doi: 10.1084/jem.163.6.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doré S., Pelletier J. P., DiBattista J. A., Tardif G., Brazeau P., Martel-Pelletier J. Human osteoarthritic chondrocytes possess an increased number of insulin-like growth factor 1 binding sites but are unresponsive to its stimulation. Possible role of IGF-1-binding proteins. Arthritis Rheum. 1994 Feb;37(2):253–263. doi: 10.1002/art.1780370215. [DOI] [PubMed] [Google Scholar]
  10. Edwards D. R., Murphy G., Reynolds J. J., Whitham S. E., Docherty A. J., Angel P., Heath J. K. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J. 1987 Jul;6(7):1899–1904. doi: 10.1002/j.1460-2075.1987.tb02449.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldring M. B., Birkhead J., Sandell L. J., Kimura T., Krane S. M. Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest. 1988 Dec;82(6):2026–2037. doi: 10.1172/JCI113823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guerne P. A., Carson D. A., Lotz M. IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones in vitro. J Immunol. 1990 Jan 15;144(2):499–505. [PubMed] [Google Scholar]
  13. Guerne P. A., Zuraw B. L., Vaughan J. H., Carson D. A., Lotz M. Synovium as a source of interleukin 6 in vitro. Contribution to local and systemic manifestations of arthritis. J Clin Invest. 1989 Feb;83(2):585–592. doi: 10.1172/JCI113921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hangoc G., Williams D. E., Falkenburg J. H., Broxmeyer H. E. Influence of IL-1 alpha and -1 beta on the survival of human bone marrow cells responding to hematopoietic colony-stimulating factors. J Immunol. 1989 Jun 15;142(12):4329–4334. [PubMed] [Google Scholar]
  15. Hawrylowicz C. M., Santoro S. A., Platt F. M., Unanue E. R. Activated platelets express IL-1 activity. J Immunol. 1989 Dec 15;143(12):4015–4018. [PubMed] [Google Scholar]
  16. Homandberg G. A., Hui F. Arg-Gly-Asp-Ser peptide analogs suppress cartilage chondrolytic activities of integrin-binding and nonbinding fibronectin fragments. Arch Biochem Biophys. 1994 Apr;310(1):40–48. doi: 10.1006/abbi.1994.1137. [DOI] [PubMed] [Google Scholar]
  17. Homandberg G. A., Hui F. High concentrations of fibronectin fragments cause short-term catabolic effects in cartilage tissue while lower concentrations cause continuous anabolic effects. Arch Biochem Biophys. 1994 Jun;311(2):213–218. doi: 10.1006/abbi.1994.1229. [DOI] [PubMed] [Google Scholar]
  18. Homandberg G. A., Meyers R., Williams J. M. Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J Rheumatol. 1993 Aug;20(8):1378–1382. [PubMed] [Google Scholar]
  19. Homandberg G. A., Meyers R., Xie D. L. Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J Biol Chem. 1992 Feb 25;267(6):3597–3604. [PubMed] [Google Scholar]
  20. Ito A., Goshowaki H., Sato T., Mori Y., Yamashita K., Hayakawa T., Nagase H. Human recombinant interleukin-1 alpha-mediated stimulation of procollagenase production and suppression of biosynthesis of tissue inhibitor of metalloproteinases in rabbit uterine cervical fibroblasts. FEBS Lett. 1988 Jul 18;234(2):326–330. doi: 10.1016/0014-5793(88)80109-1. [DOI] [PubMed] [Google Scholar]
  21. Ju S. T., Ruddle N. H., Strack P., Dorf M. E., DeKruyff R. H. Expression of two distinct cytolytic mechanisms among murine CD4 subsets. J Immunol. 1990 Jan 1;144(1):23–31. [PubMed] [Google Scholar]
  22. Kerr L. D., Miller D. B., Matrisian L. M. TGF-beta 1 inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence. Cell. 1990 Apr 20;61(2):267–278. doi: 10.1016/0092-8674(90)90807-q. [DOI] [PubMed] [Google Scholar]
  23. Kuettner K. E., Memoli V. A., Pauli B. U., Wrobel N. C., Thonar E. J., Daniel J. C. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. II. Maintenance of collagen and proteoglycan phenotype. J Cell Biol. 1982 Jun;93(3):751–757. doi: 10.1083/jcb.93.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Libby P., Ordovas J. M., Auger K. R., Robbins A. H., Birinyi L. K., Dinarello C. A. Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol. 1986 Aug;124(2):179–185. [PMC free article] [PubMed] [Google Scholar]
  25. Lisak R. P., Bealmear B. Antibodies to interleukin-1 inhibit cytokine-induced proliferation of neonatal rat Schwann cells in vitro. J Neuroimmunol. 1991 Feb;31(2):123–132. doi: 10.1016/0165-5728(91)90018-3. [DOI] [PubMed] [Google Scholar]
  26. Lotz M., Guerne P. A. Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity (TIMP-1/EPA). J Biol Chem. 1991 Feb 5;266(4):2017–2020. [PubMed] [Google Scholar]
  27. McQuillan D. J., Handley C. J., Campbell M. A., Bolis S., Milway V. E., Herington A. C. Stimulation of proteoglycan biosynthesis by serum and insulin-like growth factor-I in cultured bovine articular cartilage. Biochem J. 1986 Dec 1;240(2):423–430. doi: 10.1042/bj2400423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miossec P., Naviliat M., Dupuy d'Angeac A., Sany J., Banchereau J. Low levels of interleukin-4 and high levels of transforming growth factor beta in rheumatoid synovitis. Arthritis Rheum. 1990 Aug;33(8):1180–1187. doi: 10.1002/art.1780330819. [DOI] [PubMed] [Google Scholar]
  29. Navarro S., Debili N., Le Couedic J. P., Klein B., Breton-Gorius J., Doly J., Vainchenker W. Interleukin-6 and its receptor are expressed by human megakaryocytes: in vitro effects on proliferation and endoreplication. Blood. 1991 Feb 1;77(3):461–471. [PubMed] [Google Scholar]
  30. Nietfeld J. J., Wilbrink B., Helle M., van Roy J. L., den Otter W., Swaak A. J., Huber-Bruning O. Interleukin-1-induced interleukin-6 is required for the inhibition of proteoglycan synthesis by interleukin-1 in human articular cartilage. Arthritis Rheum. 1990 Nov;33(11):1695–1701. doi: 10.1002/art.1780331113. [DOI] [PubMed] [Google Scholar]
  31. Obata K., Iwata K., Okada Y., Kohrin Y., Ohuchi E., Yoshida S., Shinmei M., Hayakawa T. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 3 (stromelysin-1) using monoclonal antibodies. Clin Chim Acta. 1992 Oct 15;211(1-2):59–72. doi: 10.1016/0009-8981(92)90105-y. [DOI] [PubMed] [Google Scholar]
  32. Pratta M. A., Di Meo T. M., Ruhl D. M., Arner E. C. Effect of interleukin-1-beta and tumor necrosis factor-alpha on cartilage proteoglycan metabolism in vitro. Agents Actions. 1989 Jun;27(3-4):250–253. doi: 10.1007/BF01972788. [DOI] [PubMed] [Google Scholar]
  33. Rosenwasser L. J., Dinarello C. A. Ability of human leukocytic pyrogen to enhance phytohemagglutinin induced murine thymocyte proliferation. Cell Immunol. 1981 Sep 1;63(1):134–142. doi: 10.1016/0008-8749(81)90034-4. [DOI] [PubMed] [Google Scholar]
  34. Salem P., Deryckx S., Dulioust A., Vivier E., Denizot Y., Damais C., Dinarello C. A., Thomas Y. Immunoregulatory functions of paf-acether. IV. Enhancement of IL-1 production by muramyl dipeptide-stimulated monocytes. J Immunol. 1990 Feb 15;144(4):1338–1344. [PubMed] [Google Scholar]
  35. Smith R. J., Chin J. E., Sam L. M., Justen J. M. Biologic effects of an interleukin-1 receptor antagonist protein on interleukin-1-stimulated cartilage erosion and chondrocyte responsiveness. Arthritis Rheum. 1991 Jan;34(1):78–83. doi: 10.1002/art.1780340112. [DOI] [PubMed] [Google Scholar]
  36. Taipale J., Koli K., Keski-Oja J. Release of transforming growth factor-beta 1 from the pericellular matrix of cultured fibroblasts and fibrosarcoma cells by plasmin and thrombin. J Biol Chem. 1992 Dec 15;267(35):25378–25384. [PubMed] [Google Scholar]
  37. Tyler J. A. Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines. Biochem J. 1989 Jun 1;260(2):543–548. doi: 10.1042/bj2600543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Villiger P. M., Lotz M. Differential expression of TGF beta isoforms by human articular chondrocytes in response to growth factors. J Cell Physiol. 1992 May;151(2):318–325. doi: 10.1002/jcp.1041510213. [DOI] [PubMed] [Google Scholar]
  39. Watson J. M., Sensintaffar J. L., Berek J. S., Martínez-Maza O. Constitutive production of interleukin 6 by ovarian cancer cell lines and by primary ovarian tumor cultures. Cancer Res. 1990 Nov 1;50(21):6959–6965. [PubMed] [Google Scholar]
  40. Xie D. L., Hui F., Meyers R., Homandberg G. A. Cartilage chondrolysis by fibronectin fragments is associated with release of several proteinases: stromelysin plays a major role in chondrolysis. Arch Biochem Biophys. 1994 Jun;311(2):205–212. doi: 10.1006/abbi.1994.1228. [DOI] [PubMed] [Google Scholar]
  41. Xie D. L., Meyers R., Homandberg G. A. Fibronectin fragments in osteoarthritic synovial fluid. J Rheumatol. 1992 Sep;19(9):1448–1452. [PubMed] [Google Scholar]
  42. Xie D., Homandberg G. A. Fibronectin fragments bind to and penetrate cartilage tissue resulting in proteinase expression and cartilage damage. Biochim Biophys Acta. 1993 Sep 8;1182(2):189–196. doi: 10.1016/0925-4439(93)90140-v. [DOI] [PubMed] [Google Scholar]
  43. Xie D., Hui F., Homandberg G. A. Fibronectin fragments alter matrix protein synthesis in cartilage tissue cultured in vitro. Arch Biochem Biophys. 1993 Nov 15;307(1):110–118. doi: 10.1006/abbi.1993.1568. [DOI] [PubMed] [Google Scholar]
  44. Yocum D. E., Esparza L., Dubry S., Benjamin J. B., Volz R., Scuderi P. Characteristics of tumor necrosis factor production in rheumatoid arthritis. Cell Immunol. 1989 Aug;122(1):131–145. doi: 10.1016/0008-8749(89)90154-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES