Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 1;321(Pt 3):811–818. doi: 10.1042/bj3210811

Stimulation of Sendai virus C' protein synthesis by cycloheximide.

K C Gupta 1, E Ono 1
PMCID: PMC1218139  PMID: 9032470

Abstract

The polycistronic Sendai virus P/C mRNA is translated into five proteins (P, C', C, Y1 and Y2) from distinct start sites in virus-infected cells. The translation mechanism(s) of these proteins from two overlapping open reading frames in the P/C mRNA are poorly understood [Gupta, Ono and Xu (1996) Biochemistry 35, 1223-1231]. While investigating the initiation mechanism of C' from an ACG start site, we found that C' synthesis was resistant to inhibitors of peptide chain elongation such as cycloheximide (CHX) and anisomycin, but not to pactamycin (an inhibitor of chain initiation) or puromycin (a peptide chain terminator). Moreover, low levels (less than 30 microg/ml) of CHX significantly stimulated C' synthesis. Whereas C' synthesis was stimulated, synthesis of the P and C proteins, which are translated from the same mRNA, decreased by more than 95%. Stimulation of C' synthesis by CHX is not related to its initiation at an ACG codon. Mutation of ACG to alternative start sites had no effect on the CHX-stimulated C' synthesis. Similarly, C' synthesis was preferentially stimulated when Sendai virus-infected cells were exposed to hypotonic growth medium. These results suggest that the P/C mRNA may exist in at least two reversible conformations: whereas one conformation allows synthesis of the P and C proteins, the alternative conformation allows synthesis of the C' protein. It might be that low concentrations of CHX somehow increase the alternative conformation, which increases C' synthesis. The C' protein synthesis is reminiscent of the synthesis of stress-related proteins. Perhaps Sendai virus has evolved a novel mechanism to express both non-stress-related and stress-related proteins from the same mRNA.

Full Text

The Full Text of this article is available as a PDF (376.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becerra S. P., Rose J. A., Hardy M., Baroudy B. M., Anderson C. W. Direct mapping of adeno-associated virus capsid proteins B and C: a possible ACG initiation codon. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7919–7923. doi: 10.1073/pnas.82.23.7919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boshart M., Weber F., Jahn G., Dorsch-Häsler K., Fleckenstein B., Schaffner W. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell. 1985 Jun;41(2):521–530. doi: 10.1016/s0092-8674(85)80025-8. [DOI] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Cigan A. M., Pabich E. K., Feng L., Donahue T. F. Yeast translation initiation suppressor sui2 encodes the alpha subunit of eukaryotic initiation factor 2 and shares sequence identity with the human alpha subunit. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2784–2788. doi: 10.1073/pnas.86.8.2784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crouzet M., Begueret J. A new mutant form of the ribosomal protein L21 in the fungus Podospora anserina: identification of the structural gene for this protein. Mol Gen Genet. 1980;180(1):177–183. doi: 10.1007/BF00267367. [DOI] [PubMed] [Google Scholar]
  6. Cullen B. R. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell. 1986 Sep 26;46(7):973–982. doi: 10.1016/0092-8674(86)90696-3. [DOI] [PubMed] [Google Scholar]
  7. Curran J., Kolakofsky D. Ribosomal initiation from an ACG codon in the Sendai virus P/C mRNA. EMBO J. 1988 Jan;7(1):245–251. doi: 10.1002/j.1460-2075.1988.tb02806.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deshpande K. L., Portner A. Monoclonal antibodies to the P protein of Sendai virus define its structure and role in transcription. Virology. 1985 Jan 15;140(1):125–134. doi: 10.1016/0042-6822(85)90451-9. [DOI] [PubMed] [Google Scholar]
  9. Dillon P. J., Gupta K. C. Expression of five proteins from the Sendai virus P/C mRNA in infected cells. J Virol. 1989 Feb;63(2):974–977. doi: 10.1128/jvi.63.2.974-977.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fuerst T. R., Earl P. L., Moss B. Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Mol Cell Biol. 1987 Jul;7(7):2538–2544. doi: 10.1128/mcb.7.7.2538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gupta K. C., Kingsbury D. W. Translational modulation in vitro of a eukaryotic viral mRNA encoding overlapping genes: ribosome scanning and potential roles of conformational changes in the P/C mRNA of Sendai virus. Biochem Biophys Res Commun. 1985 Aug 30;131(1):91–97. doi: 10.1016/0006-291x(85)91774-7. [DOI] [PubMed] [Google Scholar]
  12. Gupta K. C., Ono E., Ariztia E. V., Inaba M. Translation initiation from non-AUG codons in COS1 cells is mRNA species dependent. Biochem Biophys Res Commun. 1994 Jun 15;201(2):567–573. doi: 10.1006/bbrc.1994.1739. [DOI] [PubMed] [Google Scholar]
  13. Gupta K. C., Ono E., Xu X. Lack of correlation between Sendai virus P/C mRNA structure and its utilization of two AUG start sites from alternate reading frames: implications for viral bicistronic mRNAs. Biochemistry. 1996 Jan 30;35(4):1223–1231. doi: 10.1021/bi9520646. [DOI] [PubMed] [Google Scholar]
  14. Gupta K. C., Patwardhan S. ACG, the initiator codon for a Sendai virus protein. J Biol Chem. 1988 Jun 25;263(18):8553–8556. [PubMed] [Google Scholar]
  15. Hann S. R., King M. W., Bentley D. L., Anderson C. W., Eisenman R. N. A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt's lymphomas. Cell. 1988 Jan 29;52(2):185–195. doi: 10.1016/0092-8674(88)90507-7. [DOI] [PubMed] [Google Scholar]
  16. Hann S. R. Methionine deprivation regulates the translation of functionally-distinct c-Myc proteins. Adv Exp Med Biol. 1995;375:107–116. doi: 10.1007/978-1-4899-0949-7_10. [DOI] [PubMed] [Google Scholar]
  17. Hann S. R. Regulation and function of non-AUG-initiated proto-oncogenes. Biochimie. 1994;76(9):880–886. doi: 10.1016/0300-9084(94)90190-2. [DOI] [PubMed] [Google Scholar]
  18. Hendricks D. D., Ono E., Seyer J. M., Gupta K. C. Phosphorylation of the Sendai virus C proteins. Virology. 1993 Nov;197(1):471–474. doi: 10.1006/viro.1993.1615. [DOI] [PubMed] [Google Scholar]
  19. Horikami S. M., Curran J., Kolakofsky D., Moyer S. A. Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro. J Virol. 1992 Aug;66(8):4901–4908. doi: 10.1128/jvi.66.8.4901-4908.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. doi: 10.1146/annurev.cb.08.110192.001213. [DOI] [PubMed] [Google Scholar]
  21. Käufer N. F., Fried H. M., Schwindinger W. F., Jasin M., Warner J. R. Cycloheximide resistance in yeast: the gene and its protein. Nucleic Acids Res. 1983 May 25;11(10):3123–3135. doi: 10.1093/nar/11.10.3123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Mehdi H., Ono E., Gupta K. C. Initiation of translation at CUG, GUG, and ACG codons in mammalian cells. Gene. 1990 Jul 16;91(2):173–178. doi: 10.1016/0378-1119(90)90085-6. [DOI] [PubMed] [Google Scholar]
  24. Mutoh E., Mochizuki M., Ohta A., Takagi M. Inducible expression of a gene encoding an L41 ribosomal protein responsible for the cycloheximide-resistant phenotype in the yeast Candida maltosa. J Bacteriol. 1995 Sep;177(18):5383–5386. doi: 10.1128/jb.177.18.5383-5386.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Obrig T. G., Culp W. J., McKeehan W. L., Hardesty B. The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem. 1971 Jan 10;246(1):174–181. [PubMed] [Google Scholar]
  26. Patwardhan S., Gupta K. C. Translation initiation potential of the 5' proximal AUGs of the polycistronic P/C mRNA of Sendai virus. A multipurpose vector for site-specific mutagenesis. J Biol Chem. 1988 Apr 5;263(10):4907–4913. [PubMed] [Google Scholar]
  27. Perlman J., Feldman J. F. Cycloheximide and heat shock induce new polypeptide synthesis in Neurospora crassa. Mol Cell Biol. 1982 Oct;2(10):1167–1173. doi: 10.1128/mcb.2.10.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Suganuma A., Gupta K. C. An evaluation of primer length on random-primed DNA synthesis for nucleic acid hybridization: longer is not better. Anal Biochem. 1995 Jan 20;224(2):605–608. doi: 10.1006/abio.1995.1095. [DOI] [PubMed] [Google Scholar]
  29. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vidal S., Curran J., Kolakofsky D. Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity. J Virol. 1990 Jan;64(1):239–246. doi: 10.1128/jvi.64.1.239-246.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Walden W. E., Thach R. E. Translational control of gene expression in a normal fibroblast. Characterization of a subclass of mRNAs with unusual kinetic properties. Biochemistry. 1986 Apr 22;25(8):2033–2041. doi: 10.1021/bi00356a030. [DOI] [PubMed] [Google Scholar]
  32. Yao M. C., Yao C. H. Transformation of Tetrahymena to cycloheximide resistance with a ribosomal protein gene through sequence replacement. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9493–9497. doi: 10.1073/pnas.88.21.9493. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES