Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 1;321(Pt 3):845–848. doi: 10.1042/bj3210845

Electrical stimulation of C2C12 myotubes induces contractions and represses thyroid-hormone-dependent transcription of the fast-type sarcoplasmic-reticulum Ca2+-ATPase gene.

M H Thelen 1, W S Simonides 1, C van Hardeveld 1
PMCID: PMC1218143  PMID: 9032474

Abstract

Chronic low-frequency contraction of skeletal muscle, either induced by a slow motor nerve or through direct electrical stimulation, generally induces expression of proteins associated with the slow phenotype, while repressing the corresponding fast isoforms. Contractions thereby counteract the primarily transcriptional effect of thyroid hormone (T3) which results in the selective induction and stimulation of expression of fast isoforms. We studied the regulation of expression of the fast-type sarcoplasmic-reticulum Ca2+-ATPase (SERCA1), a characteristic component of the fast phenotype. Previous work suggested that reduction of SERCA1 expression by contractile activity might result from interference with the T3-dependent transcriptional stimulation of the SERCA1 gene. The present study was set up to test this unexpected mode of action of contractile activity. We show that electrical stimulation of C2C12 mouse myotubes, which results in synchronous contractions at the imposed frequency, reduces basal but virtually abolishes T3-dependent SERCA1 expression. T3-dependent expression of a reporter gene driven by the SERCA1 promoter was similarly affected by electrical stimulation. This is the first demonstration that the counteracting effects on muscle gene expression of electrically induced contractions and T3 may interact at the transcriptional level.

Full Text

The Full Text of this article is available as a PDF (190.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brent G. A., Moore D. D., Larsen P. R. Thyroid hormone regulation of gene expression. Annu Rev Physiol. 1991;53:17–35. doi: 10.1146/annurev.ph.53.030191.000313. [DOI] [PubMed] [Google Scholar]
  2. Briggs F. N., Lee K. F., Feher J. J., Wechsler A. S., Ohlendieck K., Campbell K. Ca-ATPase isozyme expression in sarcoplasmic reticulum is altered by chronic stimulation of skeletal muscle. FEBS Lett. 1990 Jan 1;259(2):269–272. doi: 10.1016/0014-5793(90)80025-e. [DOI] [PubMed] [Google Scholar]
  3. Caiozzo V. J., Herrick R. E., Baldwin K. M. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms. Am J Physiol. 1992 Jul;263(1 Pt 1):C86–C94. doi: 10.1152/ajpcell.1992.263.1.C86. [DOI] [PubMed] [Google Scholar]
  4. Carnac G., Albagli-Curiel O., Vandromme M., Pinset C., Montarras D., Laudet V., Bonnieu A. 3,5,3'-Triiodothyronine positively regulates both MyoD1 gene transcription and terminal differentiation in C2 myoblasts. Mol Endocrinol. 1992 Aug;6(8):1185–1194. doi: 10.1210/mend.6.8.1406697. [DOI] [PubMed] [Google Scholar]
  5. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeGroot L. J., Nakai A., Sakurai A., Macchia E. The molecular basis of thyroid hormone action. J Endocrinol Invest. 1989 Dec;12(11):843–861. doi: 10.1007/BF03350080. [DOI] [PubMed] [Google Scholar]
  7. Florini J. R., Ewton D. Z., Roof S. L. Insulin-like growth factor-I stimulates terminal myogenic differentiation by induction of myogenin gene expression. Mol Endocrinol. 1991 May;5(5):718–724. doi: 10.1210/mend-5-5-718. [DOI] [PubMed] [Google Scholar]
  8. Kirschbaum B. J., Kucher H. B., Termin A., Kelly A. M., Pette D. Antagonistic effects of chronic low frequency stimulation and thyroid hormone on myosin expression in rat fast-twitch muscle. J Biol Chem. 1990 Aug 15;265(23):13974–13980. [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Leberer E., Härtner K. T., Brandl C. J., Fujii J., Tada M., MacLennan D. H., Pette D. Slow/cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban mRNAs are expressed in chronically stimulated rabbit fast-twitch muscle. Eur J Biochem. 1989 Oct 20;185(1):51–54. doi: 10.1111/j.1432-1033.1989.tb15080.x. [DOI] [PubMed] [Google Scholar]
  11. Leeuw T., Pette D. Coordinate changes in the expression of troponin subunit and myosin heavy-chain isoforms during fast-to-slow transition of low-frequency-stimulated rabbit muscle. Eur J Biochem. 1993 May 1;213(3):1039–1046. doi: 10.1111/j.1432-1033.1993.tb17851.x. [DOI] [PubMed] [Google Scholar]
  12. Martonosi A. N., Dux L., Terjung R. L., Roufa D. Regulation of membrane assembly during development of sarcoplasmic reticulum: the possible role of calcium. Ann N Y Acad Sci. 1982;402:485–514. doi: 10.1111/j.1749-6632.1982.tb25771.x. [DOI] [PubMed] [Google Scholar]
  13. Muller A., van Hardeveld C., Simonides W. S., van Rijn J. Ca2+ homeostasis and fast-type sarcoplasmic reticulum Ca(2+)-ATPase expression in L6 muscle cells. Role of thyroid hormone. Biochem J. 1992 May 1;283(Pt 3):713–718. doi: 10.1042/bj2830713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Muller A., van Hardeveld C., Simonides W. S., van Rijn J. The elevation of sarcoplasmic reticulum Ca2(+)-ATPase levels by thyroid hormone in the L6 muscle cell line is potentiated by insulin-like growth factor-I. Biochem J. 1991 Apr 1;275(Pt 1):35–40. doi: 10.1042/bj2750035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Muller A., van der Linden G. C., Zuidwijk M. J., Simonides W. S., van der Laarse W. J., van Hardeveld C. Differential effects of thyroid hormone on the expression of sarcoplasmic reticulum Ca(2+)-ATPase isoforms in rat skeletal muscle fibers. Biochem Biophys Res Commun. 1994 Sep 15;203(2):1035–1042. doi: 10.1006/bbrc.1994.2286. [DOI] [PubMed] [Google Scholar]
  16. Muscat G. E., Downes M., Dowhan D. H. Regulation of vertebrate muscle differentiation by thyroid hormone: the role of the myoD gene family. Bioessays. 1995 Mar;17(3):211–218. doi: 10.1002/bies.950170307. [DOI] [PubMed] [Google Scholar]
  17. Nwoye L., Mommaerts W. F., Simpson D. R., Seraydarian K., Marusich M. Evidence for a direct action of thyroid hormone in specifying muscle properties. Am J Physiol. 1982 Mar;242(3):R401–R408. doi: 10.1152/ajpregu.1982.242.3.R401. [DOI] [PubMed] [Google Scholar]
  18. Pette D., Vrbová G. Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol. 1992;120:115–202. doi: 10.1007/BFb0036123. [DOI] [PubMed] [Google Scholar]
  19. Prost E., Koenig R. J., Moore D. D., Larsen P. R., Whalen R. G. Multiple sequences encoding potential thyroid hormone receptors isolated from mouse skeletal muscle cDNA libraries. Nucleic Acids Res. 1988 Jul 11;16(13):6248–6248. doi: 10.1093/nar/16.13.6248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Prost E., Moore D. D. CAT vectors for analysis of eukaryotic promoters and enhancers. Gene. 1986;45(1):107–111. doi: 10.1016/0378-1119(86)90138-1. [DOI] [PubMed] [Google Scholar]
  21. Samuels H. H., Stanley F., Casanova J. Depletion of L-3,5,3'-triiodothyronine and L-thyroxine in euthyroid calf serum for use in cell culture studies of the action of thyroid hormone. Endocrinology. 1979 Jul;105(1):80–85. doi: 10.1210/endo-105-1-80. [DOI] [PubMed] [Google Scholar]
  22. Seed B., Sheen J. Y. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene. 1988 Jul 30;67(2):271–277. doi: 10.1016/0378-1119(88)90403-9. [DOI] [PubMed] [Google Scholar]
  23. Simonides W. S., Brent G. A., Thelen M. H., van der Linden C. G., Larsen P. R., van Hardeveld C. Characterization of the promoter of the rat sarcoplasmic endoplasmic reticulum Ca2+-ATPase 1 gene and analysis of thyroid hormone responsiveness. J Biol Chem. 1996 Dec 13;271(50):32048–32056. doi: 10.1074/jbc.271.50.32048. [DOI] [PubMed] [Google Scholar]
  24. Simonides W. S., van Hardeveld C. The postnatal development of sarcoplasmic reticulum Ca2+ transport activity in skeletal muscle of the rat is critically dependent on thyroid hormone. Endocrinology. 1989 Mar;124(3):1145–1152. doi: 10.1210/endo-124-3-1145. [DOI] [PubMed] [Google Scholar]
  25. Simonides W. S., van der Linden G. C., van Hardeveld C. Thyroid hormone differentially affects mRNA levels of Ca-ATPase isozymes of sarcoplasmic reticulum in fast and slow skeletal muscle. FEBS Lett. 1990 Nov 12;274(1-2):73–76. doi: 10.1016/0014-5793(90)81332-i. [DOI] [PubMed] [Google Scholar]
  26. Termin A., Staron R. S., Pette D. Changes in myosin heavy chain isoforms during chronic low-frequency stimulation of rat fast hindlimb muscles. A single-fiber study. Eur J Biochem. 1989 Dec 22;186(3):749–754. doi: 10.1111/j.1432-1033.1989.tb15269.x. [DOI] [PubMed] [Google Scholar]
  27. Thelen M. H., Muller A., Zuidwijk M. J., van der Linden G. C., Simonides W. S., van Hardeveld C. Differential regulation of the expression of fast-type sarcoplasmic-reticulum Ca(2+)-ATPase by thyroid hormone and insulin-like growth factor-I in the L6 muscle cell line. Biochem J. 1994 Oct 15;303(Pt 2):467–474. doi: 10.1042/bj3030467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thomas P. E., Ranatunga K. W. Factors affecting muscle fiber transformation in cross-reinnervated muscle. Muscle Nerve. 1993 Feb;16(2):193–199. doi: 10.1002/mus.880160213. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES