Abstract
Human CYP17 (P-450(17alpha), 17alpha-hydroxylase-17,20-lyase)-catalysed side-chain cleavage of 17alpha-hydroxyprogestogens into androgens is greatly dependent on the presence of cytochrome b5. The native form of cytochrome b5 is composed of a globular core, residues 1-98, followed by a membrane insertable C-terminal tail, residues 99-133. In the present study the abilities of five different forms of cytochrome b5 to support the side-chain cleavage activity of CYP17 were compared. The five derivatives were: the native pig cytochrome b5 (native pig), its genetically engineered rat counterpart (core-tail), the soluble core form of the latter (core), the core with the secretory signal sequence of alkaline phosphatase appended to its N-terminal (signal-core) and the latter containing the C-terminal tail of the native rat protein (signal-core-tail). When examined by Edman degradation and MS, the engineered proteins were shown to have the expected N-terminal amino acid sequences and molecular masses. The native pig was found to be acetylated at the N-terminal. The native pig and core-tail enzymes were equally efficient at enhancing the side-chain cleavage activity of human CYP17 and the signal-core-tail was 55% as efficient. The core and signal-core constructs were completely inactive in the aforementioned reaction. All the five derivatives were reduced to varying degrees by NADPH:cytochrome P-450 (NADPH-P450) reductase and the relative efficiencies of this reduction were reminiscent of the behaviour of these derivatives in supporting the side-chain cleavage reaction. In the side-chain cleavage assay, however, NADPH-P450 reductase was used in large excess so that the reduction of cytochrome b5 derivatives was not rate-limiting. The results highlight that productive interaction between cytochrome b5 and CYP17 is governed not only by the presence of a membrane insertable hydrophobic region on the cytochrome b5 but also by its defined spatial orientation at the C-terminal.
Full Text
The Full Text of this article is available as a PDF (417.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akhtar M., Corina D., Miller S., Shyadehi A. Z., Wright J. N. Mechanism of the acyl-carbon cleavage and related reactions catalyzed by multifunctional P-450s: studies on cytochrome P-450(17)alpha. Biochemistry. 1994 Apr 12;33(14):4410–4418. doi: 10.1021/bi00180a039. [DOI] [PubMed] [Google Scholar]
- Bonfils C., Balny C., Maurel P. Direct evidence for electron transfer from ferrous cytochrome b5 to the oxyferrous intermediate of liver microsomal cytochrome P-450 LM2. J Biol Chem. 1981 Sep 25;256(18):9457–9465. [PubMed] [Google Scholar]
- Chiang J. Y. Interaction of purified microsomal cytochrome P-450 with cytochrome b5. Arch Biochem Biophys. 1981 Oct 15;211(2):662–673. doi: 10.1016/0003-9861(81)90502-6. [DOI] [PubMed] [Google Scholar]
- Enoch H. G., Strittmatter P. Cytochrome b5 reduction by NADPH-cytochrome P-450 reductase. J Biol Chem. 1979 Sep 25;254(18):8976–8981. [PubMed] [Google Scholar]
- Enomoto K., Sato R. Incorporation in vitro of purified cytochrome b 5 into liver microsomal membranes. Biochem Biophys Res Commun. 1973 Mar 5;51(1):1–7. doi: 10.1016/0006-291x(73)90498-1. [DOI] [PubMed] [Google Scholar]
- Gallagher J., Kaderbhai N., Kaderbhai M. A. Gene-dose-dependent expression of soluble mammalian cytochrome b5 in Escherichia coli. Appl Microbiol Biotechnol. 1992 Oct;38(1):77–83. doi: 10.1007/BF00169423. [DOI] [PubMed] [Google Scholar]
- Harding V., Karim A., Kaderbhai N., Jones A., Evans A., Kaderbhai M. A. Processing of chimeric mammalian cytochrome b5 precursors in Escherichia coli: reaction specificity of signal peptidase and identification of an aminopeptidase in post-translocational processing. Biochem J. 1993 Aug 1;293(Pt 3):751–756. doi: 10.1042/bj2930751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hildebrandt A., Estabrook R. W. Evidence for the participation of cytochrome b 5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys. 1971 Mar;143(1):66–79. doi: 10.1016/0003-9861(71)90186-x. [DOI] [PubMed] [Google Scholar]
- Holmans P. L., Shet M. S., Martin-Wixtrom C. A., Fisher C. W., Estabrook R. W. The high-level expression in Escherichia coli of the membrane-bound form of human and rat cytochrome b5 and studies on their mechanism of function. Arch Biochem Biophys. 1994 Aug 1;312(2):554–565. doi: 10.1006/abbi.1994.1345. [DOI] [PubMed] [Google Scholar]
- Imai T., Globerman H., Gertner J. M., Kagawa N., Waterman M. R. Expression and purification of functional human 17 alpha-hydroxylase/17,20-lyase (P450c17) in Escherichia coli. Use of this system for study of a novel form of combined 17 alpha-hydroxylase/17,20-lyase deficiency. J Biol Chem. 1993 Sep 15;268(26):19681–19689. [PubMed] [Google Scholar]
- Imai Y. Reconstituted O-dealkylase systems containing various forms of liver microsomal cytochrome P-450. J Biochem. 1979 Dec;86(6):1697–1707. doi: 10.1093/oxfordjournals.jbchem.a132690. [DOI] [PubMed] [Google Scholar]
- Imai Y., Sato R. The roles of cytochrome b5 in a reconstituted N-demethylase system containing cytochrome P-450. Biochem Biophys Res Commun. 1977 Mar 21;75(2):420–426. doi: 10.1016/0006-291x(77)91059-2. [DOI] [PubMed] [Google Scholar]
- Ito A., Sato R. Purification by means of detergents and properties of cytochrome b5 from liver microsomes. J Biol Chem. 1968 Sep 25;243(18):4922–4923. [PubMed] [Google Scholar]
- Kaderbhai N., Kaderbhai M. A. Expression, isolation, and characterization of a signal sequence-appended chimeric precursor protein. Protein Expr Purif. 1996 May;7(3):237–246. doi: 10.1006/prep.1996.0034. [DOI] [PubMed] [Google Scholar]
- Kajihara T., Hagihara B. Crystalline cytochrome b5. I. Preparation of crystalline cytochrome b5 from rabbit liver. J Biochem. 1968 Apr;63(4):453–461. doi: 10.1093/oxfordjournals.jbchem.a128797. [DOI] [PubMed] [Google Scholar]
- Karim A., Kaderbhai N., Evans A., Harding V., Kaderbhai M. A. Efficient bacterial export of a eukaryotic cytoplasmic cytochrome. Biotechnology (N Y) 1993 May;11(5):612–618. doi: 10.1038/nbt0593-612. [DOI] [PubMed] [Google Scholar]
- Katagiri M., Kagawa N., Waterman M. R. The role of cytochrome b5 in the biosynthesis of androgens by human P450c17. Arch Biochem Biophys. 1995 Mar 10;317(2):343–347. doi: 10.1006/abbi.1995.1173. [DOI] [PubMed] [Google Scholar]
- Katagiri M., Suhara K., Shiroo M., Fujimura Y. Role of cytochrome b5 in the cytochrome P-450-mediated C21-steroid 17,20-lyase reaction. Biochem Biophys Res Commun. 1982 Sep 16;108(1):379–384. doi: 10.1016/0006-291x(82)91877-0. [DOI] [PubMed] [Google Scholar]
- Lee-Robichaud P., Shyadehi A. Z., Wright J. N., Akhtar M. E., Akhtar M. Mechanistic kinship between hydroxylation and desaturation reactions: acyl-carbon bond cleavage promoted by pig and human CYP17 (P-450(17)alpha; 17 alpha-hydroxylase-17,20-lyase). Biochemistry. 1995 Oct 31;34(43):14104–14113. doi: 10.1021/bi00043a015. [DOI] [PubMed] [Google Scholar]
- Lee-Robichaud P., Wright J. N., Akhtar M. E., Akhtar M. Modulation of the activity of human 17 alpha-hydroxylase-17,20-lyase (CYP17) by cytochrome b5: endocrinological and mechanistic implications. Biochem J. 1995 Jun 15;308(Pt 3):901–908. doi: 10.1042/bj3080901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu A. Y., Levin W., Selander H., Jerina D. M. Liver microsomal electron transport systems. III. The involvement of cytochrome b5 in the NADPH-supported cytochrome P-450-dependent hydroxylation of chlorobenzene. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1348–1355. doi: 10.1016/s0006-291x(74)80432-8. [DOI] [PubMed] [Google Scholar]
- Lu A. Y., West S. B., Vore M., Ryan D., Levin W. Role of cytochrome b5 in hydroxylation by a reconstituted cytochrome P-450-containing system. J Biol Chem. 1974 Nov 10;249(21):6701–6709. [PubMed] [Google Scholar]
- Meadus W. J., Mason J. I., Squires E. J. Cytochrome P450c17 from porcine and bovine adrenal catalyses the formation of 5,16-androstadien-3 beta-ol from pregnenolone in the presence of cytochrome b5. J Steroid Biochem Mol Biol. 1993 Nov;46(5):565–572. doi: 10.1016/0960-0760(93)90183-w. [DOI] [PubMed] [Google Scholar]
- Morgan E. T., Coon M. J. Effects of cytochrome b5 on cytochrome P-450-catalyzed reactions. Studies with manganese-substituted cytochrome b5. Drug Metab Dispos. 1984 May-Jun;12(3):358–364. [PubMed] [Google Scholar]
- Nakajin S., Hall P. F. Microsomal cytochrome P-450 from neonatal pig testis. Purification and properties of A C21 steroid side-chain cleavage system (17 alpha-hydroxylase-C17,20 lyase). J Biol Chem. 1981 Apr 25;256(8):3871–3876. [PubMed] [Google Scholar]
- Nakajin S., Hall P. F., Onoda M. Testicular microsomal cytochrome P-450 for C21 steroid side chain cleavage. Spectral and binding studies. J Biol Chem. 1981 Jun 25;256(12):6134–6139. [PubMed] [Google Scholar]
- Nakajin S., Takahashi M., Shinoda M., Hall P. F. Cytochrome b5 promotes the synthesis of delta 16-C19 steroids by homogeneous cytochrome P-450 C21 side-chain cleavage from pig testis. Biochem Biophys Res Commun. 1985 Oct 30;132(2):708–713. doi: 10.1016/0006-291x(85)91190-8. [DOI] [PubMed] [Google Scholar]
- Noshiro M., Ullrich V., Omura T. Cytochrome b5 as electron donor for oxy-cytochrome P-450. Eur J Biochem. 1981 Jun 1;116(3):521–526. doi: 10.1111/j.1432-1033.1981.tb05367.x. [DOI] [PubMed] [Google Scholar]
- Omata Y., Sakamoto H., Robinson R. C., Pincus M. R., Friedman F. K. Interaction between cytochrome P450 2B1 and cytochrome bs: inhibition by synthetic peptides indicates a role for P450 residues Lys-122 and Arg-125. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1090–1095. doi: 10.1006/bbrc.1994.1817. [DOI] [PubMed] [Google Scholar]
- Onoda M., Hall P. F. Cytochrome b5 stimulates purified testicular microsomal cytochrome P-450 (C21 side-chain cleavage). Biochem Biophys Res Commun. 1982 Sep 30;108(2):454–460. doi: 10.1016/0006-291x(82)90850-6. [DOI] [PubMed] [Google Scholar]
- Ozols J. Structure of cytochrome b5 and its topology in the microsomal membrane. Biochim Biophys Acta. 1989 Jul 27;997(1-2):121–130. doi: 10.1016/0167-4838(89)90143-x. [DOI] [PubMed] [Google Scholar]
- Pompon D., Coon M. J. On the mechanism of action of cytochrome P-450. Oxidation and reduction of the ferrous dioxygen complex of liver microsomal cytochrome P-450 by cytochrome b5. J Biol Chem. 1984 Dec 25;259(24):15377–15385. [PubMed] [Google Scholar]
- Spatz L., Strittmatter P. A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues. Proc Natl Acad Sci U S A. 1971 May;68(5):1042–1046. doi: 10.1073/pnas.68.5.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stayton P. S., Poulos T. L., Sligar S. G. Putidaredoxin competitively inhibits cytochrome b5-cytochrome P-450cam association: a proposed molecular model for a cytochrome P-450cam electron-transfer complex. Biochemistry. 1989 Oct 3;28(20):8201–8205. doi: 10.1021/bi00446a035. [DOI] [PubMed] [Google Scholar]
- Stayton P. S., Sligar S. G. The cytochrome P-450cam binding surface as defined by site-directed mutagenesis and electrostatic modeling. Biochemistry. 1990 Aug 14;29(32):7381–7386. doi: 10.1021/bi00484a005. [DOI] [PubMed] [Google Scholar]
- Strittmatter P., Fleming P., Connors M., Corcoran D. Purification of cytochrome b5. Methods Enzymol. 1978;52:97–101. doi: 10.1016/s0076-6879(78)52010-7. [DOI] [PubMed] [Google Scholar]
- Strobel H. W., Dignam J. D. Purification and properties of NADPH-cytochrome P-450 reductase. Methods Enzymol. 1978;52:89–96. doi: 10.1016/s0076-6879(78)52009-0. [DOI] [PubMed] [Google Scholar]
- Sugiyama T., Miki N., Yamano T. NADH- and NADPH-dependent reconstituted p-nitroanisole O-demethylation system containing cytochrome P-450 with high affinity for cytochrome b5. J Biochem. 1980 May;87(5):1457–1467. doi: 10.1093/oxfordjournals.jbchem.a132887. [DOI] [PubMed] [Google Scholar]
- Tamburini P. P., MacFarquhar S., Schenkman J. B. Evidence of binary complex formations between cytochrome P-450, cytochrome b5, and NADPH-cytochrome P-450 reductase of hepatic microsomes. Biochem Biophys Res Commun. 1986 Jan 29;134(2):519–526. doi: 10.1016/s0006-291x(86)80451-x. [DOI] [PubMed] [Google Scholar]
- Tamburini P. P., Schenkman J. B. Mechanism of interaction between cytochromes P-450 RLM5 and b5: evidence for an electrostatic mechanism involving cytochrome b5 heme propionate groups. Arch Biochem Biophys. 1986 Mar;245(2):512–522. doi: 10.1016/0003-9861(86)90244-4. [DOI] [PubMed] [Google Scholar]
- Vergères G., Ramsden J., Waskell L. The carboxyl terminus of the membrane-binding domain of cytochrome b5 spans the bilayer of the endoplasmic reticulum. J Biol Chem. 1995 Feb 17;270(7):3414–3422. doi: 10.1074/jbc.270.7.3414. [DOI] [PubMed] [Google Scholar]
- Wu F. F., Vergères G., Waskell L. Kinetics of the reduction of cytochrome b5 with mutations in its membrane-binding domain. Arch Biochem Biophys. 1994 Feb 1;308(2):380–386. doi: 10.1006/abbi.1994.1054. [DOI] [PubMed] [Google Scholar]