Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 1;321(Pt 3):857–863. doi: 10.1042/bj3210857

Interaction of human CYP17 (P-450(17alpha), 17alpha-hydroxylase-17,20-lyase) with cytochrome b5: importance of the orientation of the hydrophobic domain of cytochrome b5.

P Lee-Robichaud 1, M A Kaderbhai 1, N Kaderbhai 1, J N Wright 1, M Akhtar 1
PMCID: PMC1218145  PMID: 9032476

Abstract

Human CYP17 (P-450(17alpha), 17alpha-hydroxylase-17,20-lyase)-catalysed side-chain cleavage of 17alpha-hydroxyprogestogens into androgens is greatly dependent on the presence of cytochrome b5. The native form of cytochrome b5 is composed of a globular core, residues 1-98, followed by a membrane insertable C-terminal tail, residues 99-133. In the present study the abilities of five different forms of cytochrome b5 to support the side-chain cleavage activity of CYP17 were compared. The five derivatives were: the native pig cytochrome b5 (native pig), its genetically engineered rat counterpart (core-tail), the soluble core form of the latter (core), the core with the secretory signal sequence of alkaline phosphatase appended to its N-terminal (signal-core) and the latter containing the C-terminal tail of the native rat protein (signal-core-tail). When examined by Edman degradation and MS, the engineered proteins were shown to have the expected N-terminal amino acid sequences and molecular masses. The native pig was found to be acetylated at the N-terminal. The native pig and core-tail enzymes were equally efficient at enhancing the side-chain cleavage activity of human CYP17 and the signal-core-tail was 55% as efficient. The core and signal-core constructs were completely inactive in the aforementioned reaction. All the five derivatives were reduced to varying degrees by NADPH:cytochrome P-450 (NADPH-P450) reductase and the relative efficiencies of this reduction were reminiscent of the behaviour of these derivatives in supporting the side-chain cleavage reaction. In the side-chain cleavage assay, however, NADPH-P450 reductase was used in large excess so that the reduction of cytochrome b5 derivatives was not rate-limiting. The results highlight that productive interaction between cytochrome b5 and CYP17 is governed not only by the presence of a membrane insertable hydrophobic region on the cytochrome b5 but also by its defined spatial orientation at the C-terminal.

Full Text

The Full Text of this article is available as a PDF (417.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhtar M., Corina D., Miller S., Shyadehi A. Z., Wright J. N. Mechanism of the acyl-carbon cleavage and related reactions catalyzed by multifunctional P-450s: studies on cytochrome P-450(17)alpha. Biochemistry. 1994 Apr 12;33(14):4410–4418. doi: 10.1021/bi00180a039. [DOI] [PubMed] [Google Scholar]
  2. Bonfils C., Balny C., Maurel P. Direct evidence for electron transfer from ferrous cytochrome b5 to the oxyferrous intermediate of liver microsomal cytochrome P-450 LM2. J Biol Chem. 1981 Sep 25;256(18):9457–9465. [PubMed] [Google Scholar]
  3. Chiang J. Y. Interaction of purified microsomal cytochrome P-450 with cytochrome b5. Arch Biochem Biophys. 1981 Oct 15;211(2):662–673. doi: 10.1016/0003-9861(81)90502-6. [DOI] [PubMed] [Google Scholar]
  4. Enoch H. G., Strittmatter P. Cytochrome b5 reduction by NADPH-cytochrome P-450 reductase. J Biol Chem. 1979 Sep 25;254(18):8976–8981. [PubMed] [Google Scholar]
  5. Enomoto K., Sato R. Incorporation in vitro of purified cytochrome b 5 into liver microsomal membranes. Biochem Biophys Res Commun. 1973 Mar 5;51(1):1–7. doi: 10.1016/0006-291x(73)90498-1. [DOI] [PubMed] [Google Scholar]
  6. Gallagher J., Kaderbhai N., Kaderbhai M. A. Gene-dose-dependent expression of soluble mammalian cytochrome b5 in Escherichia coli. Appl Microbiol Biotechnol. 1992 Oct;38(1):77–83. doi: 10.1007/BF00169423. [DOI] [PubMed] [Google Scholar]
  7. Harding V., Karim A., Kaderbhai N., Jones A., Evans A., Kaderbhai M. A. Processing of chimeric mammalian cytochrome b5 precursors in Escherichia coli: reaction specificity of signal peptidase and identification of an aminopeptidase in post-translocational processing. Biochem J. 1993 Aug 1;293(Pt 3):751–756. doi: 10.1042/bj2930751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hildebrandt A., Estabrook R. W. Evidence for the participation of cytochrome b 5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys. 1971 Mar;143(1):66–79. doi: 10.1016/0003-9861(71)90186-x. [DOI] [PubMed] [Google Scholar]
  9. Holmans P. L., Shet M. S., Martin-Wixtrom C. A., Fisher C. W., Estabrook R. W. The high-level expression in Escherichia coli of the membrane-bound form of human and rat cytochrome b5 and studies on their mechanism of function. Arch Biochem Biophys. 1994 Aug 1;312(2):554–565. doi: 10.1006/abbi.1994.1345. [DOI] [PubMed] [Google Scholar]
  10. Imai T., Globerman H., Gertner J. M., Kagawa N., Waterman M. R. Expression and purification of functional human 17 alpha-hydroxylase/17,20-lyase (P450c17) in Escherichia coli. Use of this system for study of a novel form of combined 17 alpha-hydroxylase/17,20-lyase deficiency. J Biol Chem. 1993 Sep 15;268(26):19681–19689. [PubMed] [Google Scholar]
  11. Imai Y. Reconstituted O-dealkylase systems containing various forms of liver microsomal cytochrome P-450. J Biochem. 1979 Dec;86(6):1697–1707. doi: 10.1093/oxfordjournals.jbchem.a132690. [DOI] [PubMed] [Google Scholar]
  12. Imai Y., Sato R. The roles of cytochrome b5 in a reconstituted N-demethylase system containing cytochrome P-450. Biochem Biophys Res Commun. 1977 Mar 21;75(2):420–426. doi: 10.1016/0006-291x(77)91059-2. [DOI] [PubMed] [Google Scholar]
  13. Ito A., Sato R. Purification by means of detergents and properties of cytochrome b5 from liver microsomes. J Biol Chem. 1968 Sep 25;243(18):4922–4923. [PubMed] [Google Scholar]
  14. Kaderbhai N., Kaderbhai M. A. Expression, isolation, and characterization of a signal sequence-appended chimeric precursor protein. Protein Expr Purif. 1996 May;7(3):237–246. doi: 10.1006/prep.1996.0034. [DOI] [PubMed] [Google Scholar]
  15. Kajihara T., Hagihara B. Crystalline cytochrome b5. I. Preparation of crystalline cytochrome b5 from rabbit liver. J Biochem. 1968 Apr;63(4):453–461. doi: 10.1093/oxfordjournals.jbchem.a128797. [DOI] [PubMed] [Google Scholar]
  16. Karim A., Kaderbhai N., Evans A., Harding V., Kaderbhai M. A. Efficient bacterial export of a eukaryotic cytoplasmic cytochrome. Biotechnology (N Y) 1993 May;11(5):612–618. doi: 10.1038/nbt0593-612. [DOI] [PubMed] [Google Scholar]
  17. Katagiri M., Kagawa N., Waterman M. R. The role of cytochrome b5 in the biosynthesis of androgens by human P450c17. Arch Biochem Biophys. 1995 Mar 10;317(2):343–347. doi: 10.1006/abbi.1995.1173. [DOI] [PubMed] [Google Scholar]
  18. Katagiri M., Suhara K., Shiroo M., Fujimura Y. Role of cytochrome b5 in the cytochrome P-450-mediated C21-steroid 17,20-lyase reaction. Biochem Biophys Res Commun. 1982 Sep 16;108(1):379–384. doi: 10.1016/0006-291x(82)91877-0. [DOI] [PubMed] [Google Scholar]
  19. Lee-Robichaud P., Shyadehi A. Z., Wright J. N., Akhtar M. E., Akhtar M. Mechanistic kinship between hydroxylation and desaturation reactions: acyl-carbon bond cleavage promoted by pig and human CYP17 (P-450(17)alpha; 17 alpha-hydroxylase-17,20-lyase). Biochemistry. 1995 Oct 31;34(43):14104–14113. doi: 10.1021/bi00043a015. [DOI] [PubMed] [Google Scholar]
  20. Lee-Robichaud P., Wright J. N., Akhtar M. E., Akhtar M. Modulation of the activity of human 17 alpha-hydroxylase-17,20-lyase (CYP17) by cytochrome b5: endocrinological and mechanistic implications. Biochem J. 1995 Jun 15;308(Pt 3):901–908. doi: 10.1042/bj3080901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lu A. Y., Levin W., Selander H., Jerina D. M. Liver microsomal electron transport systems. III. The involvement of cytochrome b5 in the NADPH-supported cytochrome P-450-dependent hydroxylation of chlorobenzene. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1348–1355. doi: 10.1016/s0006-291x(74)80432-8. [DOI] [PubMed] [Google Scholar]
  22. Lu A. Y., West S. B., Vore M., Ryan D., Levin W. Role of cytochrome b5 in hydroxylation by a reconstituted cytochrome P-450-containing system. J Biol Chem. 1974 Nov 10;249(21):6701–6709. [PubMed] [Google Scholar]
  23. Meadus W. J., Mason J. I., Squires E. J. Cytochrome P450c17 from porcine and bovine adrenal catalyses the formation of 5,16-androstadien-3 beta-ol from pregnenolone in the presence of cytochrome b5. J Steroid Biochem Mol Biol. 1993 Nov;46(5):565–572. doi: 10.1016/0960-0760(93)90183-w. [DOI] [PubMed] [Google Scholar]
  24. Morgan E. T., Coon M. J. Effects of cytochrome b5 on cytochrome P-450-catalyzed reactions. Studies with manganese-substituted cytochrome b5. Drug Metab Dispos. 1984 May-Jun;12(3):358–364. [PubMed] [Google Scholar]
  25. Nakajin S., Hall P. F. Microsomal cytochrome P-450 from neonatal pig testis. Purification and properties of A C21 steroid side-chain cleavage system (17 alpha-hydroxylase-C17,20 lyase). J Biol Chem. 1981 Apr 25;256(8):3871–3876. [PubMed] [Google Scholar]
  26. Nakajin S., Hall P. F., Onoda M. Testicular microsomal cytochrome P-450 for C21 steroid side chain cleavage. Spectral and binding studies. J Biol Chem. 1981 Jun 25;256(12):6134–6139. [PubMed] [Google Scholar]
  27. Nakajin S., Takahashi M., Shinoda M., Hall P. F. Cytochrome b5 promotes the synthesis of delta 16-C19 steroids by homogeneous cytochrome P-450 C21 side-chain cleavage from pig testis. Biochem Biophys Res Commun. 1985 Oct 30;132(2):708–713. doi: 10.1016/0006-291x(85)91190-8. [DOI] [PubMed] [Google Scholar]
  28. Noshiro M., Ullrich V., Omura T. Cytochrome b5 as electron donor for oxy-cytochrome P-450. Eur J Biochem. 1981 Jun 1;116(3):521–526. doi: 10.1111/j.1432-1033.1981.tb05367.x. [DOI] [PubMed] [Google Scholar]
  29. Omata Y., Sakamoto H., Robinson R. C., Pincus M. R., Friedman F. K. Interaction between cytochrome P450 2B1 and cytochrome bs: inhibition by synthetic peptides indicates a role for P450 residues Lys-122 and Arg-125. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1090–1095. doi: 10.1006/bbrc.1994.1817. [DOI] [PubMed] [Google Scholar]
  30. Onoda M., Hall P. F. Cytochrome b5 stimulates purified testicular microsomal cytochrome P-450 (C21 side-chain cleavage). Biochem Biophys Res Commun. 1982 Sep 30;108(2):454–460. doi: 10.1016/0006-291x(82)90850-6. [DOI] [PubMed] [Google Scholar]
  31. Ozols J. Structure of cytochrome b5 and its topology in the microsomal membrane. Biochim Biophys Acta. 1989 Jul 27;997(1-2):121–130. doi: 10.1016/0167-4838(89)90143-x. [DOI] [PubMed] [Google Scholar]
  32. Pompon D., Coon M. J. On the mechanism of action of cytochrome P-450. Oxidation and reduction of the ferrous dioxygen complex of liver microsomal cytochrome P-450 by cytochrome b5. J Biol Chem. 1984 Dec 25;259(24):15377–15385. [PubMed] [Google Scholar]
  33. Spatz L., Strittmatter P. A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues. Proc Natl Acad Sci U S A. 1971 May;68(5):1042–1046. doi: 10.1073/pnas.68.5.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stayton P. S., Poulos T. L., Sligar S. G. Putidaredoxin competitively inhibits cytochrome b5-cytochrome P-450cam association: a proposed molecular model for a cytochrome P-450cam electron-transfer complex. Biochemistry. 1989 Oct 3;28(20):8201–8205. doi: 10.1021/bi00446a035. [DOI] [PubMed] [Google Scholar]
  35. Stayton P. S., Sligar S. G. The cytochrome P-450cam binding surface as defined by site-directed mutagenesis and electrostatic modeling. Biochemistry. 1990 Aug 14;29(32):7381–7386. doi: 10.1021/bi00484a005. [DOI] [PubMed] [Google Scholar]
  36. Strittmatter P., Fleming P., Connors M., Corcoran D. Purification of cytochrome b5. Methods Enzymol. 1978;52:97–101. doi: 10.1016/s0076-6879(78)52010-7. [DOI] [PubMed] [Google Scholar]
  37. Strobel H. W., Dignam J. D. Purification and properties of NADPH-cytochrome P-450 reductase. Methods Enzymol. 1978;52:89–96. doi: 10.1016/s0076-6879(78)52009-0. [DOI] [PubMed] [Google Scholar]
  38. Sugiyama T., Miki N., Yamano T. NADH- and NADPH-dependent reconstituted p-nitroanisole O-demethylation system containing cytochrome P-450 with high affinity for cytochrome b5. J Biochem. 1980 May;87(5):1457–1467. doi: 10.1093/oxfordjournals.jbchem.a132887. [DOI] [PubMed] [Google Scholar]
  39. Tamburini P. P., MacFarquhar S., Schenkman J. B. Evidence of binary complex formations between cytochrome P-450, cytochrome b5, and NADPH-cytochrome P-450 reductase of hepatic microsomes. Biochem Biophys Res Commun. 1986 Jan 29;134(2):519–526. doi: 10.1016/s0006-291x(86)80451-x. [DOI] [PubMed] [Google Scholar]
  40. Tamburini P. P., Schenkman J. B. Mechanism of interaction between cytochromes P-450 RLM5 and b5: evidence for an electrostatic mechanism involving cytochrome b5 heme propionate groups. Arch Biochem Biophys. 1986 Mar;245(2):512–522. doi: 10.1016/0003-9861(86)90244-4. [DOI] [PubMed] [Google Scholar]
  41. Vergères G., Ramsden J., Waskell L. The carboxyl terminus of the membrane-binding domain of cytochrome b5 spans the bilayer of the endoplasmic reticulum. J Biol Chem. 1995 Feb 17;270(7):3414–3422. doi: 10.1074/jbc.270.7.3414. [DOI] [PubMed] [Google Scholar]
  42. Wu F. F., Vergères G., Waskell L. Kinetics of the reduction of cytochrome b5 with mutations in its membrane-binding domain. Arch Biochem Biophys. 1994 Feb 1;308(2):380–386. doi: 10.1006/abbi.1994.1054. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES