Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 1;321(Pt 3):865–871. doi: 10.1042/bj3210865

Identification of a receptor-type protein tyrosine phosphatase expressed in postmitotic maturing neurons: its structure and expression in the central nervous system.

M Tagawa 1, T Shirasawa 1, Y Yahagi 1, T Tomoda 1, H Kuroyanagi 1, S Fujimura 1, S Sakiyama 1, N Maruyama 1
PMCID: PMC1218146  PMID: 9032477

Abstract

We have isolated a rat cDNA encoding a receptor-type protein-tyrosine-phosphatase (RTP) expressed in brain and kidney (RPTP-BK) and characterized its expression in the developing central nervous system. RPTP-BK has seven fibronectin type III-like repeats in the extracellular region and a unique catalytic phosphatase domain in the cytoplasmic region. Bacterial expression of its phosphatase domain showed that the dephosphorylation of phosphotyrosine residues was mediated by the cytoplasmic catalytic domain. Sequence comparison revealed that RPTP-BK is homologous with GLEPP1, a rabbit PTP expressed in renal glomerular epithelia, and has the same phosphatase domain as murine PTPphi expressed in macrophages. RPTP-BK has also significant homology with Drosophila DPTP10D in the phosphatase domain, whose expression is localized exclusively in growth cones of the embryonal brains. The gene for RPTP-BK is well conserved among other species, and the expression in the brain but not in the kidney is developmentally regulated during the neonatal stage. Hybridization in situ showed that RPTP-BK is highly expressed in the postmitotic maturing neurons of the olfactory bulb, developing neocortex, hippocampus and thalamus. Because the expression of RPTP-BK in the developing neocortex is correlated with the stage of axonogenesis in cortical neurons, RPTP-BK might be crucial in neural cell development of the mammalian central nervous system.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agmon A., Yang L. T., O'Dowd D. K., Jones E. G. Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of developing mouse barrel cortex. J Neurosci. 1993 Dec;13(12):5365–5382. doi: 10.1523/JNEUROSCI.13-12-05365.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barford D., Jia Z., Tonks N. K. Protein tyrosine phosphatases take off. Nat Struct Biol. 1995 Dec;2(12):1043–1053. doi: 10.1038/nsb1295-1043. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Chao M. V. Neurotrophin receptors: a window into neuronal differentiation. Neuron. 1992 Oct;9(4):583–593. doi: 10.1016/0896-6273(92)90023-7. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Desai C. J., Gindhart J. G., Jr, Goldstein L. S., Zinn K. Receptor tyrosine phosphatases are required for motor axon guidance in the Drosophila embryo. Cell. 1996 Feb 23;84(4):599–609. doi: 10.1016/s0092-8674(00)81035-1. [DOI] [PubMed] [Google Scholar]
  7. Elson A., Leder P. Identification of a cytoplasmic, phorbol ester-inducible isoform of protein tyrosine phosphatase epsilon. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12235–12239. doi: 10.1073/pnas.92.26.12235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fischer E. H., Charbonneau H., Tonks N. K. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science. 1991 Jul 26;253(5018):401–406. doi: 10.1126/science.1650499. [DOI] [PubMed] [Google Scholar]
  9. Gebbink M. F., Zondag G. C., Wubbolts R. W., Beijersbergen R. L., van Etten I., Moolenaar W. H. Cell-cell adhesion mediated by a receptor-like protein tyrosine phosphatase. J Biol Chem. 1993 Aug 5;268(22):16101–16104. [PubMed] [Google Scholar]
  10. Gebbink M. F., van Etten I., Hateboer G., Suijkerbuijk R., Beijersbergen R. L., Geurts van Kessel A., Moolenaar W. H. Cloning, expression and chromosomal localization of a new putative receptor-like protein tyrosine phosphatase. FEBS Lett. 1991 Sep 23;290(1-2):123–130. doi: 10.1016/0014-5793(91)81241-y. [DOI] [PubMed] [Google Scholar]
  11. Jia Z., Barford D., Flint A. J., Tonks N. K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science. 1995 Jun 23;268(5218):1754–1758. doi: 10.1126/science.7540771. [DOI] [PubMed] [Google Scholar]
  12. Kornblihtt A. R., Umezawa K., Vibe-Pedersen K., Baralle F. E. Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J. 1985 Jul;4(7):1755–1759. doi: 10.1002/j.1460-2075.1985.tb03847.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  14. Krueger N. X., Streuli M., Saito H. Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J. 1990 Oct;9(10):3241–3252. doi: 10.1002/j.1460-2075.1990.tb07523.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Longo F. M., Martignetti J. A., Le Beau J. M., Zhang J. S., Barnes J. P., Brosius J. Leukocyte common antigen-related receptor-linked tyrosine phosphatase. Regulation of mRNA expression. J Biol Chem. 1993 Dec 15;268(35):26503–26511. [PubMed] [Google Scholar]
  16. Mourey R. J., Dixon J. E. Protein tyrosine phosphatases: characterization of extracellular and intracellular domains. Curr Opin Genet Dev. 1994 Feb;4(1):31–39. doi: 10.1016/0959-437x(94)90088-4. [DOI] [PubMed] [Google Scholar]
  17. Pixley F. J., Lee P. S., Dominguez M. G., Einstein D. B., Stanley E. R. A heteromorphic protein-tyrosine phosphatase, PTP phi, is regulated by CSF-1 in macrophages. J Biol Chem. 1995 Nov 10;270(45):27339–27347. doi: 10.1074/jbc.270.45.27339. [DOI] [PubMed] [Google Scholar]
  18. Sap J., Jiang Y. P., Friedlander D., Grumet M., Schlessinger J. Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding. Mol Cell Biol. 1994 Jan;14(1):1–9. doi: 10.1128/mcb.14.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shilo B. Z. Roles of receptor tyrosine kinases in Drosophila development. FASEB J. 1992 Aug;6(11):2915–2922. doi: 10.1096/fasebj.6.11.1322852. [DOI] [PubMed] [Google Scholar]
  20. Shirasawa T., Akashi T., Sakamoto K., Takahashi H., Maruyama N., Hirokawa K. Gene expression of CD24 core peptide molecule in developing brain and developing non-neural tissues. Dev Dyn. 1993 Sep;198(1):1–13. doi: 10.1002/aja.1001980102. [DOI] [PubMed] [Google Scholar]
  21. Streuli M., Krueger N. X., Thai T., Tang M., Saito H. Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J. 1990 Aug;9(8):2399–2407. doi: 10.1002/j.1460-2075.1990.tb07415.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tagawa M., Shirasawa T., Fujimura S., Sakiyama S. Expression of protein tyrosine phosphatase genes in the developing brain of mouse and rat. Biochem Mol Biol Int. 1994 Aug;33(6):1221–1227. [PubMed] [Google Scholar]
  23. Takahashi T., Shirasawa T., Miyake K., Yahagi Y., Maruyama N., Kasahara N., Kawamura T., Matsumura O., Mitarai T., Sakai O. Protein tyrosine kinases expressed in glomeruli and cultured glomerular cells: Flt-1 and VEGF expression in renal mesangial cells. Biochem Biophys Res Commun. 1995 Apr 6;209(1):218–226. doi: 10.1006/bbrc.1995.1492. [DOI] [PubMed] [Google Scholar]
  24. Thomas M. L., Barclay A. N., Gagnon J., Williams A. F. Evidence from cDNA clones that the rat leukocyte-common antigen (T200) spans the lipid bilayer and contains a cytoplasmic domain of 80,000 Mr. Cell. 1985 May;41(1):83–93. doi: 10.1016/0092-8674(85)90063-7. [DOI] [PubMed] [Google Scholar]
  25. Thomas P. E., Wharram B. L., Goyal M., Wiggins J. E., Holzman L. B., Wiggins R. C. GLEPP1, a renal glomerular epithelial cell (podocyte) membrane protein-tyrosine phosphatase. Identification, molecular cloning, and characterization in rabbit. J Biol Chem. 1994 Aug 5;269(31):19953–19962. [PubMed] [Google Scholar]
  26. Tian S. S., Tsoulfas P., Zinn K. Three receptor-linked protein-tyrosine phosphatases are selectively expressed on central nervous system axons in the Drosophila embryo. Cell. 1991 Nov 15;67(4):675–685. doi: 10.1016/0092-8674(91)90063-5. [DOI] [PubMed] [Google Scholar]
  27. Tonks N. K. Introduction: protein tyrosine phosphatases. Semin Cell Biol. 1993 Dec;4(6):373–377. doi: 10.1006/scel.1993.1044. [DOI] [PubMed] [Google Scholar]
  28. Wiggins R. C., Wiggins J. E., Goyal M., Wharram B. L., Thomas P. E. Molecular cloning of cDNAs encoding human GLEPP1, a membrane protein tyrosine phosphatase: characterization of the GLEPP1 protein distribution in human kidney and assignment of the GLEPP1 gene to human chromosome 12p12-p13. Genomics. 1995 May 1;27(1):174–181. doi: 10.1006/geno.1995.1021. [DOI] [PubMed] [Google Scholar]
  29. Yan H., Grossman A., Wang H., D'Eustachio P., Mossie K., Musacchio J. M., Silvennoinen O., Schlessinger J. A novel receptor tyrosine phosphatase-sigma that is highly expressed in the nervous system. J Biol Chem. 1993 Nov 25;268(33):24880–24886. [PubMed] [Google Scholar]
  30. Yang X. H., Seow K. T., Bahri S. M., Oon S. H., Chia W. Two Drosophila receptor-like tyrosine phosphatase genes are expressed in a subset of developing axons and pioneer neurons in the embryonic CNS. Cell. 1991 Nov 15;67(4):661–673. doi: 10.1016/0092-8674(91)90062-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES