Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 15;322(Pt 1):57–63. doi: 10.1042/bj3220057

Structural instability of mutant beta-cell glucokinase: implications for the molecular pathogenesis of maturity-onset diabetes of the young (type-2).

P Kesavan 1, L Wang 1, E Davis 1, A Cuesta 1, I Sweet 1, K Niswender 1, M A Magnuson 1, F M Matschinsky 1
PMCID: PMC1218158  PMID: 9078243

Abstract

The catalytic function and thermal stability of wild-type and mutant recombinant human pancreatic beta-cell glucokinase was investigated. The mutants E70K and E300K, which are thought to be the cause of impaired insulin production by the pancreatic beta-cell and decreased glucose uptake by the liver of patients with maturity-onset diabetes of the young, were found to be functionally indistinguishable from the wild-type, i.e. their kcat.S0.5, inflection point and h were normal. However, these two mutants showed markedly reduced stability under a variety of test conditions. Glucokinase instability, not low enzyme catalytic activity, may be the cause of diabetes mellitus with E70K and E300K mutants.

Full Text

The Full Text of this article is available as a PDF (377.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedoya F. J., Matschinsky F. M., Shimizu T., O'Neil J. J., Appel M. C. Differential regulation of glucokinase activity in pancreatic islets and liver of the rat. J Biol Chem. 1986 Aug 15;261(23):10760–10764. [PubMed] [Google Scholar]
  2. Bedoya F. J., Meglasson M. D., Wilson J. M., Matschinsky F. M. Radiometric oil well assay for glucokinase in microscopic structures. Anal Biochem. 1985 Feb 1;144(2):504–513. doi: 10.1016/0003-2697(85)90147-2. [DOI] [PubMed] [Google Scholar]
  3. Byrne M. M., Sturis J., Clément K., Vionnet N., Pueyo M. E., Stoffel M., Takeda J., Passa P., Cohen D., Bell G. I. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Invest. 1994 Mar;93(3):1120–1130. doi: 10.1172/JCI117064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Froguel P., Zouali H., Vionnet N., Velho G., Vaxillaire M., Sun F., Lesage S., Stoffel M., Takeda J., Passa P. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med. 1993 Mar 11;328(10):697–702. doi: 10.1056/NEJM199303113281005. [DOI] [PubMed] [Google Scholar]
  5. Grupe A., Hultgren B., Ryan A., Ma Y. H., Bauer M., Stewart T. A. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell. 1995 Oct 6;83(1):69–78. doi: 10.1016/0092-8674(95)90235-x. [DOI] [PubMed] [Google Scholar]
  6. Iynedjian P. B. Mammalian glucokinase and its gene. Biochem J. 1993 Jul 1;293(Pt 1):1–13. doi: 10.1042/bj2930001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Liang Y., Kesavan P., Wang L. Q., Niswender K., Tanizawa Y., Permutt M. A., Magnuson M. A., Matschinsky F. M. Variable effects of maturity-onset-diabetes-of-youth (MODY)-associated glucokinase mutations on substrate interactions and stability of the enzyme. Biochem J. 1995 Jul 1;309(Pt 1):167–173. doi: 10.1042/bj3090167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Matschinsky F. M. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes. 1996 Feb;45(2):223–241. doi: 10.2337/diab.45.2.223. [DOI] [PubMed] [Google Scholar]
  9. Matschinsky F. M. Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes. 1990 Jun;39(6):647–652. doi: 10.2337/diab.39.6.647. [DOI] [PubMed] [Google Scholar]
  10. Matschinsky F., Liang Y., Kesavan P., Wang L., Froguel P., Velho G., Cohen D., Permutt M. A., Tanizawa Y., Jetton T. L. Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Invest. 1993 Nov;92(5):2092–2098. doi: 10.1172/JCI116809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meglasson M. D., Burch P. T., Berner D. K., Najafi H., Matschinsky F. M. Identification of glucokinase as an alloxan-sensitive glucose sensor of the pancreatic beta-cell. Diabetes. 1986 Oct;35(10):1163–1173. doi: 10.2337/diab.35.10.1163. [DOI] [PubMed] [Google Scholar]
  12. Newgard C. B., McGarry J. D. Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem. 1995;64:689–719. doi: 10.1146/annurev.bi.64.070195.003353. [DOI] [PubMed] [Google Scholar]
  13. Noma Y., Bonner-Weir S., Latimer J. B., Davalli A. M., Weir G. C. Translocation of glucokinase in pancreatic beta-cells during acute and chronic hyperglycemia. Endocrinology. 1996 Apr;137(4):1485–1491. doi: 10.1210/endo.137.4.8625927. [DOI] [PubMed] [Google Scholar]
  14. Pilkis S. J., Weber I. T., Harrison R. W., Bell G. I. Glucokinase: structural analysis of a protein involved in susceptibility to diabetes. J Biol Chem. 1994 Sep 2;269(35):21925–21928. [PubMed] [Google Scholar]
  15. Thomas P. J., Qu B. H., Pedersen P. L. Defective protein folding as a basis of human disease. Trends Biochem Sci. 1995 Nov;20(11):456–459. doi: 10.1016/s0968-0004(00)89100-8. [DOI] [PubMed] [Google Scholar]
  16. Tippett P. S., Neet K. E. Interconversions between different sulfhydryl-related kinetic states in glucokinase. Arch Biochem Biophys. 1983 Apr 1;222(1):285–298. doi: 10.1016/0003-9861(83)90526-x. [DOI] [PubMed] [Google Scholar]
  17. Van Schaftingen E. Glycolysis revisited. Diabetologia. 1993 Jul;36(7):581–588. doi: 10.1007/BF00404065. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES