Abstract
Telokin, an abundant gizzard protein, inhibited phosphorylation of regulatory light chain when filamentous myosin was used as the substrate but no inhibition was observed with myosin subfragment 1. At physiological telokin-to-myosin molar ratio (1:1), the inhibition amounted to a 3.5-fold reduction in the initial phosphorylation rate whereas at high molar excess of telokin over myosin, we observed an up to 20-fold decrease in this rate. In agreement with previous observations [Shirinsky, Vorotnikow, Birukov, Nanaev, Collinge, Lukas, Sellers and Watterson (1993) J. Biol. Chem. 268, 16578-16583], telokin did not inhibit phosphorylation of the isolated regulatory light chain of myosin and only moderately (35%) inhibited that of heavy meromyosin. To gain a better understanding of the mechanism of this inhibition, we investigated the effects of telokin on the recently described [Babiychuk, Babiychuk and Sobieszek (1995) Biochemistry 34, 6366-6372] oligomeric properties of smooth-muscle myosin light-chain kinase (MLCK). We showed, on the one hand, that telokin rapidly solubilized the large kinase oligomers formed at low ionic strength. With soluble kinase, on the other hand, telokin acted to increase the relative concentration of MLCK dimers and to decrease that of the hexamers and octamers. This, in turn, resulted in a reduction in the amount of MLCK bound to myosin because filamentous myosin appeared to exhibit a higher affinity for the hexamers than for the dimers. Telokin by itself was also shown to dimerize and oligomerize in solution and this oligomerization was greatly enhanced in the presence of MLCK. We suggest that telokin affects myosin phosphorylation by modulation of the oligomeric state of MLCK and its interaction with myosin filaments.
Full Text
The Full Text of this article is available as a PDF (467.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S., Klee C. B. Purification and characterization of smooth muscle myosin light chain kinase. J Biol Chem. 1981 Jul 25;256(14):7501–7509. [PubMed] [Google Scholar]
- Adelstein R. S., Klee C. B. Purification of smooth muscle myosin light-chain kinase. Methods Enzymol. 1982;85(Pt B):298–308. doi: 10.1016/0076-6879(82)85029-5. [DOI] [PubMed] [Google Scholar]
- Babiychuk E. B., Babiychuk V. S., Sobieszek A. Modulation of smooth muscle myosin light chain kinase activity by Ca2+/calmodulin-dependent, oligomeric-type modifications. Biochemistry. 1995 May 16;34(19):6366–6372. doi: 10.1021/bi00019a015. [DOI] [PubMed] [Google Scholar]
- Benian G. M., Kiff J. E., Neckelmann N., Moerman D. G., Waterston R. H. Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature. 1989 Nov 2;342(6245):45–50. doi: 10.1038/342045a0. [DOI] [PubMed] [Google Scholar]
- Collinge M., Matrisian P. E., Zimmer W. E., Shattuck R. L., Lukas T. J., Van Eldik L. J., Watterson D. M. Structure and expression of a calcium-binding protein gene contained within a calmodulin-regulated protein kinase gene. Mol Cell Biol. 1992 May;12(5):2359–2371. doi: 10.1128/mcb.12.5.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dabrowska R., Aromatorio D., Sherry J. M., Hartshorne D. J. Composition of the myosin light chain kinase from chicken gizzard. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1263–1272. doi: 10.1016/0006-291x(77)91429-2. [DOI] [PubMed] [Google Scholar]
- Einheber S., Fischman D. A. Isolation and characterization of a cDNA clone encoding avian skeletal muscle C-protein: an intracellular member of the immunoglobulin superfamily. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2157–2161. doi: 10.1073/pnas.87.6.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallagher P. J., Herring B. P. The carboxyl terminus of the smooth muscle myosin light chain kinase is expressed as an independent protein, telokin. J Biol Chem. 1991 Dec 15;266(35):23945–23952. [PMC free article] [PubMed] [Google Scholar]
- Holden H. M., Ito M., Hartshorne D. J., Rayment I. X-ray structure determination of telokin, the C-terminal domain of myosin light chain kinase, at 2.8 A resolution. J Mol Biol. 1992 Oct 5;227(3):840–851. doi: 10.1016/0022-2836(92)90226-a. [DOI] [PubMed] [Google Scholar]
- Ikebe M., Stepinska M., Kemp B. E., Means A. R., Hartshorne D. J. Proteolysis of smooth muscle myosin light chain kinase. Formation of inactive and calmodulin-independent fragments. J Biol Chem. 1987 Oct 5;262(28):13828–13834. [PubMed] [Google Scholar]
- Ito M., Dabrowska R., Guerriero V., Jr, Hartshorne D. J. Identification in turkey gizzard of an acidic protein related to the C-terminal portion of smooth muscle myosin light chain kinase. J Biol Chem. 1989 Aug 25;264(24):13971–13974. [PubMed] [Google Scholar]
- Katoh T., Tanahashi K., Hasegawa Y., Morita F. Porcine aorta smooth-muscle myosin contains three species made of different combinations of two 17-kDa essential light-chain isoforms. Eur J Biochem. 1995 Jan 15;227(1-2):459–465. doi: 10.1111/j.1432-1033.1995.tb20410.x. [DOI] [PubMed] [Google Scholar]
- Klee C. B., Krinks M. H. Purification of cyclic 3',5'-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry. 1978 Jan 10;17(1):120–126. doi: 10.1021/bi00594a017. [DOI] [PubMed] [Google Scholar]
- Labeit S., Barlow D. P., Gautel M., Gibson T., Holt J., Hsieh C. L., Francke U., Leonard K., Wardale J., Whiting A. A regular pattern of two types of 100-residue motif in the sequence of titin. Nature. 1990 May 17;345(6272):273–276. doi: 10.1038/345273a0. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. T., Burgess D. R. SDS microslab linear gradient polyacrylamide gel electrophoresis. Anal Biochem. 1978 Jul 1;87(2):386–396. doi: 10.1016/0003-2697(78)90688-7. [DOI] [PubMed] [Google Scholar]
- Mornet D., Bonet A., Audemard E., Bonicel J. Functional sequences of the myosin head. J Muscle Res Cell Motil. 1989 Feb;10(1):10–24. doi: 10.1007/BF01739853. [DOI] [PubMed] [Google Scholar]
- Ngai P. K., Walsh M. P. Properties of caldesmon isolated from chicken gizzard. Biochem J. 1985 Sep 15;230(3):695–707. doi: 10.1042/bj2300695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson N. J., Pearson R. B., Needleman D. S., Hurwitz M. Y., Kemp B. E., Means A. R. Regulatory and structural motifs of chicken gizzard myosin light chain kinase. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2284–2288. doi: 10.1073/pnas.87.6.2284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roush C. L., Kennelly P. J., Glaccum M. B., Helfman D. M., Scott J. D., Krebs E. G. Isolation of the cDNA encoding rat skeletal muscle myosin light chain kinase. Sequence and tissue distribution. J Biol Chem. 1988 Jul 25;263(21):10510–10516. [PubMed] [Google Scholar]
- Sellers J. R., Pato M. D. The binding of smooth muscle myosin light chain kinase and phosphatases to actin and myosin. J Biol Chem. 1984 Jun 25;259(12):7740–7746. [PubMed] [Google Scholar]
- Shirinsky V. P., Vorotnikov A. V., Birukov K. G., Nanaev A. K., Collinge M., Lukas T. J., Sellers J. R., Watterson D. M. A kinase-related protein stabilizes unphosphorylated smooth muscle myosin minifilaments in the presence of ATP. J Biol Chem. 1993 Aug 5;268(22):16578–16583. [PubMed] [Google Scholar]
- Shoemaker M. O., Lau W., Shattuck R. L., Kwiatkowski A. P., Matrisian P. E., Guerra-Santos L., Wilson E., Lukas T. J., Van Eldik L. J., Watterson D. M. Use of DNA sequence and mutant analyses and antisense oligodeoxynucleotides to examine the molecular basis of nonmuscle myosin light chain kinase autoinhibition, calmodulin recognition, and activity. J Cell Biol. 1990 Sep;111(3):1107–1125. doi: 10.1083/jcb.111.3.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobieszek A. Bulk isolation of the 20,000-Da light chain of smooth muscle myosin: separation of the unphosphorylated and phosphorylated species. Anal Biochem. 1988 Jul;172(1):43–50. doi: 10.1016/0003-2697(88)90409-5. [DOI] [PubMed] [Google Scholar]
- Sobieszek A. Calmodulin-dependent autophosphorylation of smooth muscle myosin light chain kinase: intermolecular reaction mechanism via dimerization of the kinase and potentiation of the catalytic activity following activation. Biochemistry. 1995 Sep 19;34(37):11855–11863. doi: 10.1021/bi00037a025. [DOI] [PubMed] [Google Scholar]
- Sobieszek A. Gradient polyacrylamide gel electrophoresis in presence of sodium dodecyl sulfate: a practical approach to muscle contractile and regulatory proteins. Electrophoresis. 1994 Aug-Sep;15(8-9):1014–1020. doi: 10.1002/elps.11501501151. [DOI] [PubMed] [Google Scholar]
- Sobieszek A. Regulation of smooth muscle myosin light chain kinase. Allosteric effects and co-operative activation by calmodulin. J Mol Biol. 1991 Aug 20;220(4):947–957. doi: 10.1016/0022-2836(91)90365-d. [DOI] [PubMed] [Google Scholar]
- Sobieszek A., Small J. V. Myosin-linked calcium regulation in vertebrate smooth muscle. J Mol Biol. 1976 Mar 25;102(1):75–92. doi: 10.1016/0022-2836(76)90074-7. [DOI] [PubMed] [Google Scholar]
- Sobieszek A. Smooth muscle myosin as a calmodulin binding protein. Affinity increase on filament assembly. J Muscle Res Cell Motil. 1990 Apr;11(2):114–124. doi: 10.1007/BF01766490. [DOI] [PubMed] [Google Scholar]
- Sobieszek A., Strobl A., Ortner B., Babiychuk E. B. Ca(2+)-calmodulin-dependent modification of smooth-muscle myosin light-chain kinase leading to its co-operative activation by calmodulin. Biochem J. 1993 Oct 15;295(Pt 2):405–411. doi: 10.1042/bj2950405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takio K., Blumenthal D. K., Walsh K. A., Titani K., Krebs E. G. Amino acid sequence of rabbit skeletal muscle myosin light chain kinase. Biochemistry. 1986 Dec 2;25(24):8049–8057. doi: 10.1021/bi00372a038. [DOI] [PubMed] [Google Scholar]
- Yoshikai S., Ikebe M. Molecular cloning of the chicken gizzard telokin gene and cDNA. Arch Biochem Biophys. 1992 Dec;299(2):242–247. doi: 10.1016/0003-9861(92)90270-7. [DOI] [PubMed] [Google Scholar]