Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 15;322(Pt 1):103–109. doi: 10.1042/bj3220103

Calcium-dependence of synexin binding may determine aggregation and fusion of lamellar bodies.

N Sen 1, A R Spitzer 1, A Chander 1
PMCID: PMC1218164  PMID: 9078249

Abstract

Synexin (annexin VII) is a member of the annexin family of calcium and phospholipid binding proteins that promote calcium-dependent aggregation and fusion of lipid vesicles or secretory granules. We have previously suggested that synexin may be involved in membrane fusion processes during exocytosis of lung surfactant since it promotes fusion in vitro of lamellar bodies with plasma membranes. In this study, we characterized calcium-dependency of synexin binding to lamellar bodies and plasma membranes, since such binding is the initial, and, therefore, may be the rate-limiting step in membrane aggregation and fusion. The binding of biotinylated synexin to lamellar bodies and plasma membranes increased in a calcium-dependent manner reaching a maximum at approx. 200 microM Ca2+. Binding to lamellar bodies was completely inhibited by unlabelled synexin. Gel-overlay analysis showed that synexin bound to an approx. 76 kDa protein in the lamellar body and plasma membrane fractions. The calcium kinetics were noticeably similar for synexin binding to lamellar bodies and plasma membranes, aggregation of lamellar bodies, and fusion of lamellar bodies with lipid vesicles. At low calcium concentrations, aggregation of lamellar bodies could be increased with increasing synexin concentration, and arachidonic acid increased all three parameters (binding, aggregation, and fusion) in a similar manner. The effects of calcium and arachidonic acid on these three parameters suggest that synexin binding to lamellar bodies may be a rate-determining step for fusion during surfactant secretion. Furthermore, at near physiological calcium levels, the membrane fusion may be enhanced by elevated concentrations of synexin and polyunsaturated fatty acids.

Full Text

The Full Text of this article is available as a PDF (478.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baybutt R. C., Smith J. E., Gillespie M. N., Newcomb T. G., Yeh Y. Y. Arachidonic acid and eicosapentaenoic acid stimulate type II pneumocyte surfactant secretion. Lipids. 1994 Aug;29(8):535–539. doi: 10.1007/BF02536624. [DOI] [PubMed] [Google Scholar]
  2. Belsham G. J., Denton R. M., Tanner M. J. Use of a novel rapid preparation of fat-cell plasma membranes employing Percoll to investigate the effects of insulin and adrenaline on membrane protein phosphorylation within intact fat-cells. Biochem J. 1980 Nov 15;192(2):457–467. doi: 10.1042/bj1920457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bers D. M. A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. Am J Physiol. 1982 May;242(5):C404–C408. doi: 10.1152/ajpcell.1982.242.5.C404. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Chander A. Dicyclohexylcarbodiimide and vanadate sensitive ATPase of lung lamellar bodies. Biochim Biophys Acta. 1992 Jan 24;1123(2):198–206. doi: 10.1016/0005-2760(92)90112-9. [DOI] [PubMed] [Google Scholar]
  6. Chander A., Dodia C. R., Gil J., Fisher A. B. Isolation of lamellar bodies from rat granular pneumocytes in primary culture. Biochim Biophys Acta. 1983 Aug 29;753(1):119–129. doi: 10.1016/0005-2760(83)90105-4. [DOI] [PubMed] [Google Scholar]
  7. Chander A., Fisher A. B. Choline-phosphate cytidyltransferase activity and phosphatidylcholine synthesis in rat granular pneumocytes are increased with exogenous fatty acids. Biochim Biophys Acta. 1988 Feb 19;958(3):343–351. doi: 10.1016/0005-2760(88)90219-6. [DOI] [PubMed] [Google Scholar]
  8. Chander A., Fisher A. B., Strauss J. F., 3rd Role of an acidic compartment in synthesis of disaturated phosphatidylcholine by rat granular pneumocytes. Biochem J. 1982 Dec 15;208(3):651–658. doi: 10.1042/bj2080651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chander A., Sen N. Inhibition of phosphatidylcholine secretion by stilbene disulfonates in alveolar type II cells. Biochem Pharmacol. 1993 May 5;45(9):1905–1912. doi: 10.1016/0006-2952(93)90450-b. [DOI] [PubMed] [Google Scholar]
  10. Chander A., Wu R. D. In vitro fusion of lung lamellar bodies and plasma membrane is augmented by lung synexin. Biochim Biophys Acta. 1991 Nov 5;1086(2):157–166. doi: 10.1016/0005-2760(91)90003-z. [DOI] [PubMed] [Google Scholar]
  11. Chen L., Martin G. B., Rechnitz G. A. Microtiter plate binding assay for cholinergic compounds utilizing the nicotinic acetylcholine receptor. Anal Chem. 1992 Dec 1;64(23):3018–3023. doi: 10.1021/ac00047a025. [DOI] [PubMed] [Google Scholar]
  12. Creutz C. E., Pazoles C. J., Pollard H. B. Self-association of synexin in the presence of calcium. Correlation with synexin-induced membrane fusion and examination of the structure of synexin aggregates. J Biol Chem. 1979 Jan 25;254(2):553–558. [PubMed] [Google Scholar]
  13. Creutz C. E. The annexins and exocytosis. Science. 1992 Nov 6;258(5084):924–931. doi: 10.1126/science.1439804. [DOI] [PubMed] [Google Scholar]
  14. Crumpton M. J., Dedman J. R. Protein terminology tangle. Nature. 1990 May 17;345(6272):212–212. doi: 10.1038/345212a0. [DOI] [PubMed] [Google Scholar]
  15. GREEN D. E., MII S., KOHOUT P. M. Studies on the terminal electron transport system. I. Succinic dehydrogenase. J Biol Chem. 1955 Dec;217(2):551–567. [PubMed] [Google Scholar]
  16. Glenney J. R., Jr, Weber K. Calmodulin-binding proteins of the microfilaments present in isolated brush borders and microvilli of intestinal epithelial cells. J Biol Chem. 1980 Nov 25;255(22):10551–10554. [PubMed] [Google Scholar]
  17. Glenney J., Zokas L. Antibodies to the N-terminus of calpactin II (p35) affect Ca2+ binding and phosphorylation by the epidermal growth factor receptor in vitro. Biochemistry. 1988 Mar 22;27(6):2069–2076. doi: 10.1021/bi00406a038. [DOI] [PubMed] [Google Scholar]
  18. Hamilton R. L., Jr, Goerke J., Guo L. S., Williams M. C., Havel R. J. Unilamellar liposomes made with the French pressure cell: a simple preparative and semiquantitative technique. J Lipid Res. 1980 Nov;21(8):981–992. [PubMed] [Google Scholar]
  19. Hirokawa N., Sobue K., Kanda K., Harada A., Yorifuji H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J Cell Biol. 1989 Jan;108(1):111–126. doi: 10.1083/jcb.108.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kao L. S., Schneider A. S. Calcium mobilization and catecholamine secretion in adrenal chromaffin cells. A Quin-2 fluorescence study. J Biol Chem. 1986 Apr 15;261(11):4881–4888. [PubMed] [Google Scholar]
  21. Khan W. A., Blobe G. C., Hannun Y. A. Arachidonic acid and free fatty acids as second messengers and the role of protein kinase C. Cell Signal. 1995 Mar;7(3):171–184. doi: 10.1016/0898-6568(94)00089-t. [DOI] [PubMed] [Google Scholar]
  22. Khanna N. C., Helwig E. D., Ikebuchi N. W., Fitzpatrick S., Bajwa R., Waisman D. M. Purification and characterization of annexin proteins from bovine lung. Biochemistry. 1990 May 22;29(20):4852–4862. doi: 10.1021/bi00472a015. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Landis D. M., Hall A. K., Weinstein L. A., Reese T. S. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron. 1988 May;1(3):201–209. doi: 10.1016/0896-6273(88)90140-7. [DOI] [PubMed] [Google Scholar]
  25. Liu L., Chander A. Stilbene disulfonic acids inhibit synexin-mediated membrane aggregation and fusion. Biochim Biophys Acta. 1995 Feb 9;1254(3):274–282. doi: 10.1016/0005-2760(94)00188-5. [DOI] [PubMed] [Google Scholar]
  26. Liu L., Wang M., Fisher A. B., Zimmerman U. J. Involvement of annexin II in exocytosis of lamellar bodies from alveolar epithelial type II cells. Am J Physiol. 1996 Apr;270(4 Pt 1):L668–L676. doi: 10.1152/ajplung.1996.270.4.L668. [DOI] [PubMed] [Google Scholar]
  27. Loomis W. F., Jr Developmental regulation of alkaline phosphatase in Dictyostelium discoideum. J Bacteriol. 1969 Oct;100(1):417–422. doi: 10.1128/jb.100.1.417-422.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McPhail L. C., Clayton C. C., Snyderman R. A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science. 1984 May 11;224(4649):622–625. doi: 10.1126/science.6231726. [DOI] [PubMed] [Google Scholar]
  29. Meers P., Bentz J., Alford D., Nir S., Papahadjopoulos D., Hong K. Synexin enhances the aggregation rate but not the fusion rate of liposomes. Biochemistry. 1988 Jun 14;27(12):4430–4439. doi: 10.1021/bi00412a033. [DOI] [PubMed] [Google Scholar]
  30. PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
  31. Peters-Golden M., Coburn K., Chauncey J. B. Protein kinase C activation modulates arachidonic acid metabolism in cultured alveolar epithelial cells. Exp Lung Res. 1992 Jul-Aug;18(4):535–551. doi: 10.3109/01902149209064344. [DOI] [PubMed] [Google Scholar]
  32. Plattner H. Regulation of membrane fusion during exocytosis. Int Rev Cytol. 1989;119:197–286. doi: 10.1016/s0074-7696(08)60652-x. [DOI] [PubMed] [Google Scholar]
  33. Pollard H. B., Rojas E. Ca2+-activated synexin forms highly selective, voltage-gated Ca2+ channels in phosphatidylserine bilayer membranes. Proc Natl Acad Sci U S A. 1988 May;85(9):2974–2978. doi: 10.1073/pnas.85.9.2974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ramanadham S., Bohrer A., Gross R. W., Turk J. Mass spectrometric characterization of arachidonate-containing plasmalogens in human pancreatic islets and in rat islet beta-cells and subcellular membranes. Biochemistry. 1993 Dec 14;32(49):13499–13509. doi: 10.1021/bi00212a015. [DOI] [PubMed] [Google Scholar]
  35. Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
  36. Sawyer D. W., Sullivan J. A., Mandell G. L. Intracellular free calcium localization in neutrophils during phagocytosis. Science. 1985 Nov 8;230(4726):663–666. doi: 10.1126/science.4048951. [DOI] [PubMed] [Google Scholar]
  37. Schlaepfer D. D., Mehlman T., Burgess W. H., Haigler H. T. Structural and functional characterization of endonexin II, a calcium- and phospholipid-binding protein. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6078–6082. doi: 10.1073/pnas.84.17.6078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Scott J. H., Creutz C. E., Pollard H. B., Ornberg R. Synexin binds in a calcium-dependent fashion to oriented chromaffin cell plasma membranes. FEBS Lett. 1985 Jan 21;180(1):17–23. doi: 10.1016/0014-5793(85)80222-2. [DOI] [PubMed] [Google Scholar]
  39. Simon S. M., Llinás R. R. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys J. 1985 Sep;48(3):485–498. doi: 10.1016/S0006-3495(85)83804-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sohma H., Matsushima N., Watanabe T., Hattori A., Kuroki Y., Akino T. Ca(2+)-dependent binding of annexin IV to surfactant protein A and lamellar bodies in alveolar type II cells. Biochem J. 1995 Nov 15;312(Pt 1):175–181. doi: 10.1042/bj3120175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sterner D. C., Zaks W. J., Creutz C. E. Stimulation of the Ca2+-dependent polymerization of synexin by cis-unsaturated fatty acids. Biochem Biophys Res Commun. 1985 Oct 30;132(2):505–512. doi: 10.1016/0006-291x(85)91162-3. [DOI] [PubMed] [Google Scholar]
  42. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  43. Zaks W. J., Creutz C. E. Annexin-chromaffin granule membrane interactions: a comparative study of synexin, p32 and p67. Biochim Biophys Acta. 1990 Nov 2;1029(1):149–160. doi: 10.1016/0005-2736(90)90448-w. [DOI] [PubMed] [Google Scholar]
  44. Zaks W. J., Creutz C. E. Ca(2+)-dependent annexin self-association on membrane surfaces. Biochemistry. 1991 Oct 8;30(40):9607–9615. doi: 10.1021/bi00104a007. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES