Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 15;322(Pt 1):111–117. doi: 10.1042/bj3220111

Finite change analysis of glycolytic intermediates in tuber tissue of lines of transgenic potato (Solanum tuberosum) overexpressing phosphofructokinase.

S Thomas 1, P J Mooney 1, M M Burrell 1, D A Fell 1
PMCID: PMC1218165  PMID: 9078250

Abstract

Genetically engineered organisms overexpressing phosphofructokinase (PFK), a supposed 'regulatory' step of glycolysis, often show little or no measurable change in glycolytic or respiratory flux, although the concentrations of glycolytic intermediates may change. We have used the finite change theory of Metabolic Control Analysis (MCA) to analyse the concentrations of glycolytic metabolites in aged disks of tuber tissue from four lines of transgenic potatoes expressing different amounts of PFK that, under aerobic conditions, showed statistically indistinguishable rates of respiration. The constancy of the metabolites' concentration deviation indices for different increases in PFK expression indicated that the metabolite changes from a graded series, excluding the possibility of anomalous behaviour that might be observed in a single transgenic line. Consequently we were able to use the finite change method to validate the results of an MCA model of tuber glycolysis [Thomas, Mooney, Burrell and Fell (1997) Biochem. J. 322, 119-127]. Furthermore the metabolite changes with PFK activity are evidence that near-equilibrium steps do not transmit increased substrate concentrations down the pathway without attenuation. Our results support the view that flux increase by activation of a single enzyme early in the pathway will, contrary to expectations, be of limited effectiveness in achieving flux increases.

Full Text

The Full Text of this article is available as a PDF (354.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. B., Rowan K. S. Glycolytic control of respiration during aging of carrot root tissue. Plant Physiol. 1970 Apr;45(4):490–494. doi: 10.1104/pp.45.4.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blangy D. Propriétés allostériques de la phosphofructokinase d'E. coli. Etude de la fixation des ligands par dialyse à l'équilibre. Biochimie. 1971;53(2):135–144. doi: 10.1016/s0300-9084(71)80044-5. [DOI] [PubMed] [Google Scholar]
  3. Davies S. E., Brindle K. M. Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry. 1992 May 19;31(19):4729–4735. doi: 10.1021/bi00134a028. [DOI] [PubMed] [Google Scholar]
  4. Dennis D. T., Coultate T. P. Phosphofructokinase, a regulatory enzyme in plants. Biochem Biophys Res Commun. 1966 Oct 20;25(2):187–191. doi: 10.1016/0006-291x(66)90578-x. [DOI] [PubMed] [Google Scholar]
  5. Dennis D. T., Coultate T. P. The regulatory properties of a plant phosphofructokinase during leaf development. Biochim Biophys Acta. 1967 Sep 12;146(1):129–137. doi: 10.1016/0005-2744(67)90079-4. [DOI] [PubMed] [Google Scholar]
  6. Fell D. A., Sauro H. M. Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur J Biochem. 1985 May 2;148(3):555–561. doi: 10.1111/j.1432-1033.1985.tb08876.x. [DOI] [PubMed] [Google Scholar]
  7. Fell D. A., Thomas S. Physiological control of metabolic flux: the requirement for multisite modulation. Biochem J. 1995 Oct 1;311(Pt 1):35–39. doi: 10.1042/bj3110035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heinisch J. Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast. Mol Gen Genet. 1986 Jan;202(1):75–82. doi: 10.1007/BF00330520. [DOI] [PubMed] [Google Scholar]
  9. Hofmeyr J. H., Cornish-Bowden A. Quantitative assessment of regulation in metabolic systems. Eur J Biochem. 1991 Aug 15;200(1):223–236. doi: 10.1111/j.1432-1033.1991.tb21071.x. [DOI] [PubMed] [Google Scholar]
  10. Häusler R. E., Holtum J. A., Latzko E. Cytosolic Phosphofructokinase from Spinach Leaves : II. Affinity for Mg and Nucleoside Phosphates. Plant Physiol. 1989 Aug;90(4):1506–1512. doi: 10.1104/pp.90.4.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kacser H., Acerenza L. A universal method for achieving increases in metabolite production. Eur J Biochem. 1993 Sep 1;216(2):361–367. doi: 10.1111/j.1432-1033.1993.tb18153.x. [DOI] [PubMed] [Google Scholar]
  12. Kacser H., Burns J. A. The control of flux. Biochem Soc Trans. 1995 May;23(2):341–366. doi: 10.1042/bst0230341. [DOI] [PubMed] [Google Scholar]
  13. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  14. Kelly G. J., Turner J. F. The regulation of pea-seed phosphofructokinase by 6-phosphogluconate, 3-phosphoglycerate, 2-phosphoglycerate and phosphoenolpyruvate. Biochim Biophys Acta. 1970 Jun;208(3):360–367. doi: 10.1016/0304-4165(70)90207-2. [DOI] [PubMed] [Google Scholar]
  15. Kelly G. J., Turner J. F. The regulation of pea-seed phosphofructokinase by phosphoenolpyruvate. Biochem J. 1969 Nov;115(3):481–487. doi: 10.1042/bj1150481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kemerer V. R., Griffin C. C., Brand L. Phosphofructokinase from Escherichia coli. Methods Enzymol. 1975;42:91–98. doi: 10.1016/0076-6879(75)42099-7. [DOI] [PubMed] [Google Scholar]
  17. Niederberger P., Prasad R., Miozzari G., Kacser H. A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast. Biochem J. 1992 Oct 15;287(Pt 2):473–479. doi: 10.1042/bj2870473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Podestá F. E., Plaxton W. C. Kinetic and regulatory properties of cytosolic pyruvate kinase from germinating castor oil seeds. Biochem J. 1991 Oct 15;279(Pt 2):495–501. doi: 10.1042/bj2790495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rees T. A., Beevers H. Pathways of Glucose Dissimilation in Carrot Slices. Plant Physiol. 1960 Nov;35(6):830–838. doi: 10.1104/pp.35.6.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sabularse D. C., Anderson R. L. D-Fructose 2,6-bisphosphate: a naturally occurring activator for inorganic pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase in plants. Biochem Biophys Res Commun. 1981 Dec 15;103(3):848–855. doi: 10.1016/0006-291x(81)90888-3. [DOI] [PubMed] [Google Scholar]
  21. Sauro H. M., Small J. R., Fell D. A. Metabolic control and its analysis. Extensions to the theory and matrix method. Eur J Biochem. 1987 May 15;165(1):215–221. doi: 10.1111/j.1432-1033.1987.tb11214.x. [DOI] [PubMed] [Google Scholar]
  22. Schaaff I., Heinisch J., Zimmermann F. K. Overproduction of glycolytic enzymes in yeast. Yeast. 1989 Jul-Aug;5(4):285–290. doi: 10.1002/yea.320050408. [DOI] [PubMed] [Google Scholar]
  23. Small J. R., Kacser H. Responses of metabolic systems to large changes in enzyme activities and effectors. 1. The linear treatment of unbranched chains. Eur J Biochem. 1993 Apr 1;213(1):613–624. doi: 10.1111/j.1432-1033.1993.tb17801.x. [DOI] [PubMed] [Google Scholar]
  24. Small J. R., Kacser H. Responses of metabolic systems to large changes in enzyme activities and effectors. 2. The linear treatment of branched pathways and metabolite concentrations. Assessment of the general non-linear case. Eur J Biochem. 1993 Apr 1;213(1):625–640. doi: 10.1111/j.1432-1033.1993.tb17802.x. [DOI] [PubMed] [Google Scholar]
  25. Stitt M., Cseke C., Buchanan B. B. Regulation of fructose 2,6-bisphosphate concentration in spinach leaves. Eur J Biochem. 1984 Aug 15;143(1):89–93. doi: 10.1111/j.1432-1033.1984.tb08345.x. [DOI] [PubMed] [Google Scholar]
  26. Thomas S., Fell D. A. Design of metabolic control for large flux changes. J Theor Biol. 1996 Oct 7;182(3):285–298. doi: 10.1006/jtbi.1996.0166. [DOI] [PubMed] [Google Scholar]
  27. Thomas S., Mooney P. J., Burrell M. M., Fell D. A. Metabolic Control Analysis of glycolysis in tuber tissue of potato (Solanum tuberosum): explanation for the low control coefficient of phosphofructokinase over respiratory flux. Biochem J. 1997 Feb 15;322(Pt 1):119–127. doi: 10.1042/bj3220119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Van Schaftingen E., Lederer B., Bartrons R., Hers H. G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982 Dec;129(1):191–195. doi: 10.1111/j.1432-1033.1982.tb07039.x. [DOI] [PubMed] [Google Scholar]
  29. ap Rees T., Fuller W. A., Wright B. W. Measurements of glycolytic intermediates during the onset of thermogenesis in the spadix of Arum maculatum. Biochim Biophys Acta. 1977 Aug 10;461(2):274–282. doi: 10.1016/0005-2728(77)90177-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES