Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 15;322(Pt 1):119–127. doi: 10.1042/bj3220119

Metabolic Control Analysis of glycolysis in tuber tissue of potato (Solanum tuberosum): explanation for the low control coefficient of phosphofructokinase over respiratory flux.

S Thomas 1, P J Mooney 1, M M Burrell 1, D A Fell 1
PMCID: PMC1218166  PMID: 9078251

Abstract

We have applied Metabolic Control Analysis (MCA) in an attempt to determine the distribution of glycolytic flux control between the steps of glycolysis in aged disks of potato tuber under aerobic conditions, using concentrations of glycolytic metabolites in tuber tissue from a range of transgenic potato plants and published enzyme kinetic data. We modelled the substrate and effector kinetics of potato tuber phosphofructokinase (PFK) by reanalysing published results. Despite the scarcity of reliable kinetic data, our results are in agreement with experimental findings namely that, under the conditions described, PFK has little control over glycolytic flux. Furthermore our analysis predicts that under these conditions far more control lies in the dephosphorylation of phosphoenolpyruvate and/or in the steps beyond. We have validated the results of our analysis in two ways. First, predictions based on calculated concentration control coefficients from the analysis show generally good agreement with observed metabolite deviation indices discussed in the preceding paper [Thomas, Mooney, Burrell, and Fell (1997) Biochem. J. 322, 111-117]. Second, sensitivity analysis of our results shows that the calculated control coefficients are robust to errors in the elasticities used in the analysis, of which relatively few need to be known accurately. Experimental and control analysis results agree with previous predictions of MCA that strong co-operative feedback inhibition of enzymes serves to move flux control downstream of the inhibiting metabolite. We conclude that MCA can successfully model the outcome of experiments in the genetic manipulation of enzyme amounts.

Full Text

The Full Text of this article is available as a PDF (362.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. E. Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerases. Biochim Biophys Acta. 1971 Apr 14;235(1):237–244. doi: 10.1016/0005-2744(71)90051-9. [DOI] [PubMed] [Google Scholar]
  2. BOSER H. [On the heterogenicity of enzymes. I. On enolase from potato-tubers]. Hoppe Seylers Z Physiol Chem. 1959 Aug 6;315:163–170. doi: 10.1515/bchm2.1959.315.1.163. [DOI] [PubMed] [Google Scholar]
  3. Botha F. C., Dennis D. T. Isozymes of phosphoglyceromutase from the developing endosperm of Ricinus communis: isolation and kinetic properties. Arch Biochem Biophys. 1986 Feb 15;245(1):96–103. doi: 10.1016/0003-9861(86)90193-1. [DOI] [PubMed] [Google Scholar]
  4. Fell D. A. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J. 1992 Sep 1;286(Pt 2):313–330. doi: 10.1042/bj2860313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fell D. A., Sauro H. M. Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur J Biochem. 1985 May 2;148(3):555–561. doi: 10.1111/j.1432-1033.1985.tb08876.x. [DOI] [PubMed] [Google Scholar]
  6. Fell D. A., Snell K. Control analysis of mammalian serine biosynthesis. Feedback inhibition on the final step. Biochem J. 1988 Nov 15;256(1):97–101. doi: 10.1042/bj2560097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fell D. A., Thomas S. Physiological control of metabolic flux: the requirement for multisite modulation. Biochem J. 1995 Oct 1;311(Pt 1):35–39. doi: 10.1042/bj3110035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Groen A. K., van Roermund C. W., Vervoorn R. C., Tager J. M. Control of gluconeogenesis in rat liver cells. Flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagon. Biochem J. 1986 Jul 15;237(2):379–389. doi: 10.1042/bj2370379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Groen A. K., van Roermund C. W., Vervoorn R. C., Tager J. M. Control of gluconeogenesis in rat liver cells. Flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagon. Biochem J. 1986 Jul 15;237(2):379–389. doi: 10.1042/bj2370379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heinrich R., Rapoport S. M., Rapoport T. A. Metabolic regulation and mathematical models. Prog Biophys Mol Biol. 1977;32(1):1–82. [PubMed] [Google Scholar]
  11. Heinrich R., Rapoport T. A. Mathematical analysis of multienzyme systems. II. Steady state and transient control. Biosystems. 1975 Jul;7(1):130–136. doi: 10.1016/0303-2647(75)90050-7. [DOI] [PubMed] [Google Scholar]
  12. Hofmeyr J. H., Cornish-Bowden A. Quantitative assessment of regulation in metabolic systems. Eur J Biochem. 1991 Aug 15;200(1):223–236. doi: 10.1111/j.1432-1033.1991.tb21071.x. [DOI] [PubMed] [Google Scholar]
  13. Ireland R. J., De Luca V., Dennis D. T. Characterization and kinetics of isoenzymes of pyruvate kinase from developing castor bean endosperm. Plant Physiol. 1980 Jun;65(6):1188–1193. doi: 10.1104/pp.65.6.1188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kacser H., Burns J. A. The control of flux. Biochem Soc Trans. 1995 May;23(2):341–366. doi: 10.1042/bst0230341. [DOI] [PubMed] [Google Scholar]
  15. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  16. Kashiwaya Y., Sato K., Tsuchiya N., Thomas S., Fell D. A., Veech R. L., Passonneau J. V. Control of glucose utilization in working perfused rat heart. J Biol Chem. 1994 Oct 14;269(41):25502–25514. [PubMed] [Google Scholar]
  17. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  18. Morse D. E., Horecker B. L. The mechanism of action of aldolases. Adv Enzymol Relat Areas Mol Biol. 1968;31:125–181. doi: 10.1002/9780470122761.ch4. [DOI] [PubMed] [Google Scholar]
  19. Sinha S., Brewer J. M. Purification and comparative characterization of an enolase from spinach. Plant Physiol. 1984 Apr;74(4):834–840. doi: 10.1104/pp.74.4.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Small J. R., Fell D. A. Metabolic control analysis. Sensitivity of control coefficients to elasticities. Eur J Biochem. 1990 Jul 31;191(2):413–420. doi: 10.1111/j.1432-1033.1990.tb19137.x. [DOI] [PubMed] [Google Scholar]
  21. Small J. R., Kacser H. Responses of metabolic systems to large changes in enzyme activities and effectors. 1. The linear treatment of unbranched chains. Eur J Biochem. 1993 Apr 1;213(1):613–624. doi: 10.1111/j.1432-1033.1993.tb17801.x. [DOI] [PubMed] [Google Scholar]
  22. Small J. R., Kacser H. Responses of metabolic systems to large changes in enzyme activities and effectors. 2. The linear treatment of branched pathways and metabolite concentrations. Assessment of the general non-linear case. Eur J Biochem. 1993 Apr 1;213(1):625–640. doi: 10.1111/j.1432-1033.1993.tb17802.x. [DOI] [PubMed] [Google Scholar]
  23. Stitt M. Product inhibition of potato tuber pyrophosphate:fructose-6-phosphate phosphotransferase by phosphate and pyrophosphate. Plant Physiol. 1989 Feb;89(2):628–633. doi: 10.1104/pp.89.2.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Takeda Y., Hizukuri S., Nikuni Z. Crystallization and properties of pea glucosephosphate isomerase. Biochim Biophys Acta. 1967;146(2):568–575. doi: 10.1016/0005-2744(67)90241-0. [DOI] [PubMed] [Google Scholar]
  25. Thomas S., Fell D. A. A computer program for the algebraic determination of control coefficients in Metabolic Control Analysis. Biochem J. 1993 Jun 1;292(Pt 2):351–360. doi: 10.1042/bj2920351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thomas S., Fell D. A. Design of metabolic control for large flux changes. J Theor Biol. 1996 Oct 7;182(3):285–298. doi: 10.1006/jtbi.1996.0166. [DOI] [PubMed] [Google Scholar]
  27. Thomas S., Mooney P. J., Burrell M. M., Fell D. A. Finite change analysis of glycolytic intermediates in tuber tissue of lines of transgenic potato (Solanum tuberosum) overexpressing phosphofructokinase. Biochem J. 1997 Feb 15;322(Pt 1):111–117. doi: 10.1042/bj3220111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Turner D. H., Blanch E. S., Gibbs M., Turner J. F. Triosephosphate Isomerase of Pea Seeds. Plant Physiol. 1965 Nov;40(6):1146–1150. doi: 10.1104/pp.40.6.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES