Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 15;322(Pt 1):167–173. doi: 10.1042/bj3220167

Pathways of peroxynitrite oxidation of thiol groups.

C Quijano 1, B Alvarez 1, R M Gatti 1, O Augusto 1, R Radi 1
PMCID: PMC1218173  PMID: 9078258

Abstract

Peroxynitrite mediates the oxidation of the thiol group of both cysteine and glutathione. This process is associated with oxygen consumption. At acidic pH and a cysteine/peroxynitrite molar ratio of < or = 1.2, there was a single fast phase of oxygen consumption, which increased with increasing concentrations of both cysteine and oxygen. At higher molar ratios the profile of oxygen consumption became biphasic, with a fast phase (phase I) that decreased with increasing cysteine concentration, followed by a slow phase (phase II) whose rate of oxygen consumption increased with increasing cysteine concentration. Oxygen consumption in phase I was inhibited by desferrioxamine and 5,5-dimethyl-1-pyrroline N-oxide, but not by mannitol; superoxide dismutase also inhibited oxygen consumption in phase I, while catalase added during phase II decreased the rate of oxygen consumption. For both cysteine and glutathione, oxygen consumption in phase I was maximal at neutral to acidic pH: in contrast, total thiol oxidation was maximal at alkaline pH. EPR spin-trapping studies using N-tert-butyl-alpha-phenylnitrone indicated that the yield of thiyl radical adducts had a pH profile comparable with that found for oxygen consumption. The apparent second-order rate constants for the reactions of peroxynitrite with cysteine and glutathione were 1290 +/- 30 M-1.S-1 and 281 +/- 6 M-1.S-1 respectively at pH 5.75 and 37 degrees C. These results are consistent with two different pathways participating in the reaction of peroxynitrite with low-molecular-mass thiols: (a) the reaction of the peroxynitrite anion with the protonated thiol group, in a second-order process likely to involve a two-electron oxidation, and (b) the reaction of peroxynitrous acid, or a secondary species derived from it, with the thiolate in a one-electron transfer process that yields thiyl radicals capable of initiating an oxygen-dependent radical chain reaction.

Full Text

The Full Text of this article is available as a PDF (483.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez B., Denicola A., Radi R. Reaction between peroxynitrite and hydrogen peroxide: formation of oxygen and slowing of peroxynitrite decomposition. Chem Res Toxicol. 1995 Sep;8(6):859–864. doi: 10.1021/tx00048a006. [DOI] [PubMed] [Google Scholar]
  2. Alvarez B., Rubbo H., Kirk M., Barnes S., Freeman B. A., Radi R. Peroxynitrite-dependent tryptophan nitration. Chem Res Toxicol. 1996 Mar;9(2):390–396. doi: 10.1021/tx950133b. [DOI] [PubMed] [Google Scholar]
  3. Augusto O., Gatti R. M., Radi R. Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinosydnonimine N-ethylcarbamide autooxidation: direct evidence for metal-independent formation of free radical intermediates. Arch Biochem Biophys. 1994 Apr;310(1):118–125. doi: 10.1006/abbi.1994.1147. [DOI] [PubMed] [Google Scholar]
  4. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beckman J. S., Chen J., Crow J. P., Ye Y. Z. Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegeneration. Prog Brain Res. 1994;103:371–380. doi: 10.1016/s0079-6123(08)61151-6. [DOI] [PubMed] [Google Scholar]
  6. Beckmann J. S., Ye Y. Z., Anderson P. G., Chen J., Accavitti M. A., Tarpey M. M., White C. R. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler. 1994 Feb;375(2):81–88. doi: 10.1515/bchm3.1994.375.2.81. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. Buettner G. R. Spin trapping: ESR parameters of spin adducts. Free Radic Biol Med. 1987;3(4):259–303. doi: 10.1016/s0891-5849(87)80033-3. [DOI] [PubMed] [Google Scholar]
  9. Crow J. P., Spruell C., Chen J., Gunn C., Ischiropoulos H., Tsai M., Smith C. D., Radi R., Koppenol W. H., Beckman J. S. On the pH-dependent yield of hydroxyl radical products from peroxynitrite. Free Radic Biol Med. 1994 Mar;16(3):331–338. doi: 10.1016/0891-5849(94)90034-5. [DOI] [PubMed] [Google Scholar]
  10. Denicola A., Souza J. M., Gatti R. M., Augusto O., Radi R. Desferrioxamine inhibition of the hydroxyl radical-like reactivity of peroxynitrite: role of the hydroxamic groups. Free Radic Biol Med. 1995 Jul;19(1):11–19. doi: 10.1016/0891-5849(94)00239-g. [DOI] [PubMed] [Google Scholar]
  11. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  12. Gatti R. M., Radi R., Augusto O. Peroxynitrite-mediated oxidation of albumin to the protein-thiyl free radical. FEBS Lett. 1994 Jul 18;348(3):287–290. doi: 10.1016/0014-5793(94)00625-3. [DOI] [PubMed] [Google Scholar]
  13. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  14. Jewett S. L., Cushing S., Gillespie F., Smith D., Sparks S. Reaction of bovine-liver copper-zinc superoxide dismutase with hydrogen peroxide. Evidence for reaction with H2O2 and HO2- leading to loss of copper. Eur J Biochem. 1989 Apr 1;180(3):569–575. doi: 10.1111/j.1432-1033.1989.tb14683.x. [DOI] [PubMed] [Google Scholar]
  15. Karoui H., Hogg N., Fréjaville C., Tordo P., Kalyanaraman B. Characterization of sulfur-centered radical intermediates formed during the oxidation of thiols and sulfite by peroxynitrite. ESR-spin trapping and oxygen uptake studies. J Biol Chem. 1996 Mar 15;271(11):6000–6009. doi: 10.1074/jbc.271.11.6000. [DOI] [PubMed] [Google Scholar]
  16. Koppenol W. H. A thermodynamic appraisal of the radical sink hypothesis. Free Radic Biol Med. 1993 Jan;14(1):91–94. doi: 10.1016/0891-5849(93)90513-t. [DOI] [PubMed] [Google Scholar]
  17. Koppenol W. H., Moreno J. J., Pryor W. A., Ischiropoulos H., Beckman J. S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol. 1992 Nov-Dec;5(6):834–842. doi: 10.1021/tx00030a017. [DOI] [PubMed] [Google Scholar]
  18. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  19. Moreno J. J., Pryor W. A. Inactivation of alpha 1-proteinase inhibitor by peroxynitrite. Chem Res Toxicol. 1992 May-Jun;5(3):425–431. doi: 10.1021/tx00027a017. [DOI] [PubMed] [Google Scholar]
  20. Pryor W. A., Jin X., Squadrito G. L. One- and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11173–11177. doi: 10.1073/pnas.91.23.11173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pryor W. A., Squadrito G. L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995 May;268(5 Pt 1):L699–L722. doi: 10.1152/ajplung.1995.268.5.L699. [DOI] [PubMed] [Google Scholar]
  22. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
  23. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991 Aug 1;288(2):481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
  24. Radi R., Cosgrove T. P., Beckman J. S., Freeman B. A. Peroxynitrite-induced luminol chemiluminescence. Biochem J. 1993 Feb 15;290(Pt 1):51–57. doi: 10.1042/bj2900051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Royall J. A., Kooy N. W., Beckman J. S. Nitric oxide-related oxidants in acute lung injury. New Horiz. 1995 Feb;3(1):113–122. [PubMed] [Google Scholar]
  26. Vásquez-Vivar J., Santos A. M., Junqueira V. B., Augusto O. Peroxynitrite-mediated formation of free radicals in human plasma: EPR detection of ascorbyl, albumin-thiyl and uric acid-derived free radicals. Biochem J. 1996 Mar 15;314(Pt 3):869–876. doi: 10.1042/bj3140869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Winterbourn C. C., Metodiewa D. The reaction of superoxide with reduced glutathione. Arch Biochem Biophys. 1994 Nov 1;314(2):284–290. doi: 10.1006/abbi.1994.1444. [DOI] [PubMed] [Google Scholar]
  28. Winterbourn C. C. Superoxide as an intracellular radical sink. Free Radic Biol Med. 1993 Jan;14(1):85–90. doi: 10.1016/0891-5849(93)90512-s. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES