Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 15;322(Pt 1):175–184. doi: 10.1042/bj3220175

Metabolism of 27-, 25- and 24-hydroxycholesterol in rat glial cells and neurons.

J Zhang 1, Y Akwa 1, M el-Etr 1, E E Baulieu 1, J Sjövall 1
PMCID: PMC1218174  PMID: 9078259

Abstract

The metabolism of 27-, 25- and 24-hydroxycholesterol in cultures of rat astrocytes, Schwann cells and neurons was studied. 27- and 25-Hydroxycholesterol, but not 24-hydroxycholesterol, underwent 7 alpha-hydroxylation with subsequent oxidation to 7 alpha-hydroxy-3-oxo-delta 4 steroids in all three cell types. When cells were incubated for 24 h with 0.28 nmol of 27-hydroxycholesterol in 10 ml of medium, the rates of conversion into 7 alpha-hydroxylated metabolites were 0.21, 0.12 and 0.02 nmol/24 h per 10(6) cells in the media of astrocytes, Schwann cells and neurons respectively. The corresponding values for 25-hydroxycholesterol were 0.26, 0.16 and 0.04. A minor fraction of 27-hydroxycholesterol and its 7 alpha-hydroxylated metabolites was oxidized to 3 beta-hydroxy-5-cholestenoic acid. 3 beta, 7 alpha-dihydroxy-5-cholestenoic acid and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid. In addition to the two hydroxycholesterols, other 3 beta-hydroxy-delta 4 steroids, dehydro-epiandrosterone, pregnenolone, 3 beta-hydroxy-5-cholestenoic acid and 3 beta-hydroxy-5-cholenoic acid underwent 7 alpha-hydroxylation. Competitive experiments did not distinguish between the presence of one or several 7 alpha-hydroxylases. In astrocyte incubations, 27-hydroxycholesterol also underwent 25-hydroxylation, and 12% of its metabolites carried a 25-hydroxy group. 25-Hydroxylation of added 24-hydroxycholesterol was also observed in the astrocyte incubations, as was the formation of 7 alpha, 25-dihydroxy-4-cholesten-3-one, 25-hydroxycholesterol and 7 alpha, 25-dihydroxycholesterol from endogenous precursor(s). Our study indicates that side-chain oxygenated cholesterol can undergo metabolic transformations that may be of importance for cholesterol homoeostasis in the brain.

Full Text

The Full Text of this article is available as a PDF (443.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akwa Y., Morfin R. F., Robel P., Baulieu E. E. Neurosteroid metabolism. 7 alpha-Hydroxylation of dehydroepiandrosterone and pregnenolone by rat brain microsomes. Biochem J. 1992 Dec 15;288(Pt 3):959–964. doi: 10.1042/bj2880959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akwa Y., Sananès N., Gouézou M., Robel P., Baulieu E. E., Le Goascogne C. Astrocytes and neurosteroids: metabolism of pregnenolone and dehydroepiandrosterone. Regulation by cell density. J Cell Biol. 1993 Apr;121(1):135–143. doi: 10.1083/jcb.121.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akwa Y., Schumacher M., Jung-Testas I., Baulieu E. E. Neurosteroids in rat sciatic nerves and Schwann cells. C R Acad Sci III. 1993;316(4):410–414. [PubMed] [Google Scholar]
  4. Andersson S., Davis D. L., Dahlbäck H., Jörnvall H., Russell D. W. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem. 1989 May 15;264(14):8222–8229. [PubMed] [Google Scholar]
  5. Axelson M., Larsson O., Zhang J., Shoda J., Sjövall J. Structural specificity in the suppression of HMG-CoA reductase in human fibroblasts by intermediates in bile acid biosynthesis. J Lipid Res. 1995 Feb;36(2):290–298. [PubMed] [Google Scholar]
  6. Axelson M., Mörk B., Sjövall J. Occurrence of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid as normal constituents in human blood. J Lipid Res. 1988 May;29(5):629–641. [PubMed] [Google Scholar]
  7. Axelson M., Shoda J., Sjövall J., Toll A., Wikvall K. Cholesterol is converted to 7 alpha-hydroxy-3-oxo-4-cholestenoic acid in liver mitochondria. Evidence for a mitochondrial sterol 7 alpha-hydroxylase. J Biol Chem. 1992 Jan 25;267(3):1701–1704. [PubMed] [Google Scholar]
  8. Axelson M., Sjövall J. Potential bile acid precursors in plasma--possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man. J Steroid Biochem. 1990 Aug 28;36(6):631–640. doi: 10.1016/0022-4731(90)90182-r. [DOI] [PubMed] [Google Scholar]
  9. Björkhem I., Gustafsson J. Mitochondrial omega-hydroxylation of cholesterol side chain. J Biol Chem. 1974 Apr 25;249(8):2528–2535. [PubMed] [Google Scholar]
  10. Björkhem I., Holmberg I., Oftebro H., Pedersen J. I. Properties of a reconstituted vitamin D3 25-hydroxylase from rat liver mitochondria. J Biol Chem. 1980 Jun 10;255(11):5244–5249. [PubMed] [Google Scholar]
  11. Björkhem I., Nyberg B., Einarsson K. 7 alpha-hydroxylation of 27-hydroxycholesterol in human liver microsomes. Biochim Biophys Acta. 1992 Sep 22;1128(1):73–76. doi: 10.1016/0005-2760(92)90259-x. [DOI] [PubMed] [Google Scholar]
  12. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  13. Cali J. J., Russell D. W. Characterization of human sterol 27-hydroxylase. A mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis. J Biol Chem. 1991 Apr 25;266(12):7774–7778. [PubMed] [Google Scholar]
  14. Celotti F., Melcangi R. C., Negri-Cesi P., Ballabio M., Martini L. Differential distribution of the 5-alpha-reductase in the central nervous system of the rat and the mouse: are the white matter structures of the brain target tissue for testosterone action? J Steroid Biochem. 1987 Jan;26(1):125–129. doi: 10.1016/0022-4731(87)90040-9. [DOI] [PubMed] [Google Scholar]
  15. Dhar A. K., Teng J. I., Smith L. L. Biosynthesis of cholest-5-ene-3beta, 24-diol (cerebrosterol) by bovine cerebral cortical microsomes. J Neurochem. 1973 Jul;21(1):51–60. doi: 10.1111/j.1471-4159.1973.tb04224.x. [DOI] [PubMed] [Google Scholar]
  16. Dueland S., Trawick J. D., Nenseter M. S., MacPhee A. A., Davis R. A. Expression of 7 alpha-hydroxylase in non-hepatic cells results in liver phenotypic resistance of the low density lipoprotein receptor to cholesterol repression. J Biol Chem. 1992 Nov 15;267(32):22695–22698. [PubMed] [Google Scholar]
  17. Groyer A., Robel P. DNA measurement by mithramycin fluorescence in chromatin solubilized by heparin. Anal Biochem. 1980 Jul 15;106(1):262–268. doi: 10.1016/0003-2697(80)90146-3. [DOI] [PubMed] [Google Scholar]
  18. Ichimiya H., Egestad B., Nazer H., Baginski E. S., Clayton P. T., Sjövall J. Bile acids and bile alcohols in a child with hepatic 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency: effects of chenodeoxycholic acid treatment. J Lipid Res. 1991 May;32(5):829–841. [PubMed] [Google Scholar]
  19. Johansson G. Oxidation of cholesterol, 3 -hydroxy-5-pregnen-20-one and 3 -hydroxy-5-androsten-17-one by rat liver microsomes. Eur J Biochem. 1971 Jul 15;21(1):68–79. doi: 10.1111/j.1432-1033.1971.tb01441.x. [DOI] [PubMed] [Google Scholar]
  20. Kandutsch A. A., Chen H. W., Heiniger H. J. Biological activity of some oxygenated sterols. Science. 1978 Aug 11;201(4355):498–501. doi: 10.1126/science.663671. [DOI] [PubMed] [Google Scholar]
  21. Khalil M. W., Strutt B., Vachon D., Killinger D. W. Effect of dexamethasone and cytochrome P450 inhibitors on the formation of 7 alpha-hydroxydehydroepiandrosterone by human adipose stromal cells. J Steroid Biochem Mol Biol. 1994 Apr;48(5-6):545–552. doi: 10.1016/0960-0760(94)90206-2. [DOI] [PubMed] [Google Scholar]
  22. Leighton J. K., Dueland S., Straka M. S., Trawick J., Davis R. A. Activation of the silent endogenous cholesterol-7-alpha-hydroxylase gene in rat hepatoma cells: a new complementation group having resistance to 25-hydroxycholesterol. Mol Cell Biol. 1991 Apr;11(4):2049–2056. doi: 10.1128/mcb.11.4.2049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lin Y. Y., Smith L. L. Sterol metabolism. 28. Biosynthesis and accumulation of cholest-5-ene-3beta, 24-diol (cerebrosterol) in developing rat brain. Biochim Biophys Acta. 1974 May 29;348(2):189–196. doi: 10.1016/0005-2760(74)90230-6. [DOI] [PubMed] [Google Scholar]
  24. Lund E., Andersson O., Zhang J., Babiker A., Ahlborg G., Diczfalusy U., Einarsson K., Sjövall J., Björkhem I. Importance of a novel oxidative mechanism for elimination of intracellular cholesterol in humans. Arterioscler Thromb Vasc Biol. 1996 Feb;16(2):208–212. doi: 10.1161/01.atv.16.2.208. [DOI] [PubMed] [Google Scholar]
  25. Lund E., Björkhem I., Furster C., Wikvall K. 24-, 25- and 27-hydroxylation of cholesterol by a purified preparation of 27-hydroxylase from pig liver. Biochim Biophys Acta. 1993 Feb 24;1166(2-3):177–182. doi: 10.1016/0005-2760(93)90094-p. [DOI] [PubMed] [Google Scholar]
  26. Lund E., Breuer O., Björkhem I. Evidence that 24- and 27-hydroxylation are not involved in the cholesterol-induced down-regulation of hydroxymethylglutaryl-CoA reductase in mouse liver. J Biol Chem. 1992 Dec 15;267(35):25092–25097. [PubMed] [Google Scholar]
  27. Martin K. O., Budai K., Javitt N. B. Cholesterol and 27-hydroxycholesterol 7 alpha-hydroxylation: evidence for two different enzymes. J Lipid Res. 1993 Apr;34(4):581–588. [PubMed] [Google Scholar]
  28. Nagata K., Takakura K., Asano T., Seyama Y., Hirota H., Shigematsu N., Shima I., Kasama T., Shimizu T. Identification of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid in chronic subdural hematoma. Biochim Biophys Acta. 1992 Jun 22;1126(2):229–236. doi: 10.1016/0005-2760(92)90295-7. [DOI] [PubMed] [Google Scholar]
  29. Okuda K., Usui E., Ohyama Y. Recent progress in enzymology and molecular biology of enzymes involved in vitamin D metabolism. J Lipid Res. 1995 Aug;36(8):1641–1652. [PubMed] [Google Scholar]
  30. Payne D. W., Shackleton C., Toms H., Ben-Shlomo I., Kol S., deMoura M., Strauss J. F., Adashi E. Y. A novel nonhepatic hydroxycholesterol 7 alpha-hydroxylase that is markedly stimulated by interleukin-1 beta. Characterization in the immature rat ovary. J Biol Chem. 1995 Aug 11;270(32):18888–18896. doi: 10.1074/jbc.270.32.18888. [DOI] [PubMed] [Google Scholar]
  31. Pedersen J. I., Oftebro H., Björkhem I. Reconstitution of C27-steroid 26-hydroxylase activity from bovine brain mitochondria. Biochem Int. 1989 Mar;18(3):615–622. [PubMed] [Google Scholar]
  32. Princen H. M., Meijer P., Wolthers B. G., Vonk R. J., Kuipers F. Cyclosporin A blocks bile acid synthesis in cultured hepatocytes by specific inhibition of chenodeoxycholic acid synthesis. Biochem J. 1991 Apr 15;275(Pt 2):501–505. doi: 10.1042/bj2750501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Saucier S. E., Kandutsch A. A., Clark D. S., Spencer T. A. Hepatic uptake and metabolism of ingested 24-hydroxycholesterol and 24(S),25-epoxycholesterol. Biochim Biophys Acta. 1993 Feb 10;1166(1):115–123. doi: 10.1016/0005-2760(93)90291-g. [DOI] [PubMed] [Google Scholar]
  34. Schumacher M., Jung-Testas I., Robel P., Baulieu E. E. Insulin-like growth factor I: a mitogen for rat Schwann cells in the presence of elevated levels of cyclic AMP. Glia. 1993 Aug;8(4):232–240. doi: 10.1002/glia.440080403. [DOI] [PubMed] [Google Scholar]
  35. Shoda J., Axelson M., Sjövall J. Synthesis of potential C27-intermediates in bile acid biosynthesis and their deuterium-labeled analogs. Steroids. 1993 Mar;58(3):119–125. doi: 10.1016/0039-128x(93)90048-r. [DOI] [PubMed] [Google Scholar]
  36. Shoda J., Toll A., Axelson M., Pieper F., Wikvall K., Sjövall J. Formation of 7 alpha- and 7 beta-hydroxylated bile acid precursors from 27-hydroxycholesterol in human liver microsomes and mitochondria. Hepatology. 1993 Mar;17(3):395–403. [PubMed] [Google Scholar]
  37. Skrede S., Björkhem I., Kvittingen E. A., Buchmann M. S., Lie S. O., East C., Grundy S. Demonstration of 26-hydroxylation of C27-steroids in human skin fibroblasts, and a deficiency of this activity in cerebrotendinous xanthomatosis. J Clin Invest. 1986 Sep;78(3):729–735. doi: 10.1172/JCI112633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith A. G., Gilbert J. D., Harland W. A., Brooks C. J. The isolation of cholest-5-ene-3beta,26-diol from human brain. Biochem J. 1974 Jun;139(3):793–795. doi: 10.1042/bj1390793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Smith L. L. Cholesterol autoxidation 1981-1986. Chem Phys Lipids. 1987 Jul-Sep;44(2-4):87–125. doi: 10.1016/0009-3084(87)90046-6. [DOI] [PubMed] [Google Scholar]
  40. Smith L. L., Ray D. R., Moody J. A., Wells J. D., Van Lier J. E. 24-hydroxycholesterol levels in human brain. J Neurochem. 1972 Mar;19(3):899–904. doi: 10.1111/j.1471-4159.1972.tb01406.x. [DOI] [PubMed] [Google Scholar]
  41. Sulcová J., Stárka L. 7 -Hydroxylation of dehydroepiandrosterone in human testis and epididymis in vitro. Experientia. 1972 Nov 15;28(11):1361–1362. doi: 10.1007/BF01965346. [DOI] [PubMed] [Google Scholar]
  42. Tint G. S., Dayal B., Batta A. K., Shefer S., Cheng F. W., Salen G., Mosbach E. H. Gas-liquid chromatography-mass spectrometry of trimethylsilyl ethers of bile alcohols. J Lipid Res. 1978 Nov;19(8):956–966. [PubMed] [Google Scholar]
  43. Toll A., Shoda J., Axelson M., Sjövall J., Wikvall K. 7 alpha-hydroxylation of 26-hydroxycholesterol, 3 beta-hydroxy-5-cholestenoic acid and 3 beta-hydroxy-5-cholenoic acid by cytochrome P-450 in pig liver microsomes. FEBS Lett. 1992 Jan 13;296(1):73–76. doi: 10.1016/0014-5793(92)80406-7. [DOI] [PubMed] [Google Scholar]
  44. Toll A., Wikvall K., Sudjana-Sugiaman E., Kondo K. H., Björkhem I. 7 alpha hydroxylation of 25-hydroxycholesterol in liver microsomes. Evidence that the enzyme involved is different from cholesterol 7 alpha-hydroxylase. Eur J Biochem. 1994 Sep 1;224(2):309–316. doi: 10.1111/j.1432-1033.1994.00309.x. [DOI] [PubMed] [Google Scholar]
  45. Zhang J., Akwa Y., Baulieu E. E., Sjövall J. 7 Alpha-hydroxylation of 27-hydroxycholesterol in rat brain microsomes. C R Acad Sci III. 1995 Mar;318(3):345–349. [PubMed] [Google Scholar]
  46. Zhang J., Larsson O., Sjövall J. 7 alpha-Hydroxylation of 25-hydroxycholesterol and 27-hydroxycholesterol in human fibroblasts. Biochim Biophys Acta. 1995 Jun 6;1256(3):353–359. doi: 10.1016/0005-2760(95)00045-e. [DOI] [PubMed] [Google Scholar]
  47. el-Etr M., Cordier J., Glowinski J., Premont J. A neuroglial cooperativity is required for the potentiation by 2-chloroadenosine of the muscarinic-sensitive phospholipase C in the striatum. J Neurosci. 1989 May;9(5):1473–1480. doi: 10.1523/JNEUROSCI.09-05-01473.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES