Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 15;322(Pt 1):193–198. doi: 10.1042/bj3220193

Analysis of mitogen-activated protein kinase activation by naturally occurring splice variants of TrkC, the receptor for neurotrophin-3.

F J Gunn-Moore 1, A G Williams 1, J M Tavaré 1
PMCID: PMC1218176  PMID: 9078261

Abstract

TrkC is a receptor tyrosine kinase that binds neurotrophin-3 (NT-3) with high affinity. A number of naturally occurring splice variants of TrkC exist, including one (TrkC kil4) with a 14 amino acid insertion between subdomains VII and VIII of the tyrosine kinase domain. This kinase insert blocks the ability of NT-3 to stimulate neurite outgrowth in PC12 cells and proliferation in fibroblasts. The inserts also block the ability of TrkC to form a high-affinity complex with Shc and phospholipase C gamma (PLC gamma) and the activation of PtdIns 3-kinase, and attenuates the sustained activation of mitogen-activated protein kinase (MAPK). In the current study we set out to determine whether the attenuation of the activation of MAPK by the insert was the result of the inability of TrkC to activate the Shc-Ras pathway, PtdIns 3-kinase activation, PLC gamma activation, or a combination thereof. Experiments with the use of cell-permeant inhibitors argue against a major role for PLC gamma and PtdIns 3-kinase in the activation of MAPK by TrkC. The introduction of the 14 amino acid kinase insert appeared to slow the kinetics of NT-3-stimulated Shc phosphorylation and Shc-Grb2 association and reduce their magnitude; an effect which was associated with a delayed, and only transient, activation of MAPK. Taken together, our data suggest that the apparent defect in MAPK activation caused by the kinase insert may result predominantly from an inhibition of high-affinity Shc binding, although a role for PLC gamma and PtdIns 3-kinase cannot be completely excluded.

Full Text

The Full Text of this article is available as a PDF (348.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baxter R. M., Cohen P., Obermeier A., Ullrich A., Downes C. P., Doza Y. N. Phosphotyrosine residues in the nerve-growth-factor receptor (Trk-A). Their role in the activation of inositolphospholipid metabolism and protein kinase cascades in phaeochromocytoma (PC12) cells. Eur J Biochem. 1995 Nov 15;234(1):84–91. doi: 10.1111/j.1432-1033.1995.084_c.x. [DOI] [PubMed] [Google Scholar]
  2. Cross D. A., Alessi D. R., Vandenheede J. R., McDowell H. E., Hundal H. S., Cohen P. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem J. 1994 Oct 1;303(Pt 1):21–26. doi: 10.1042/bj3030021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Bernardi M. A., Rabins S. J., Colangelo A. M., Brooker G., Mocchetti I. TrkA mediates the nerve growth factor-induced intracellular calcium accumulation. J Biol Chem. 1996 Mar 15;271(11):6092–6098. doi: 10.1074/jbc.271.11.6092. [DOI] [PubMed] [Google Scholar]
  4. Guiton M., Gunn-Moore F. J., Glass D. J., Geis D. R., Yancopoulos G. D., Tavaré J. M. Naturally occurring tyrosine kinase inserts block high affinity binding of phospholipase C gamma and Shc to TrkC and neurotrophin-3 signaling. J Biol Chem. 1995 Sep 1;270(35):20384–20390. doi: 10.1074/jbc.270.35.20384. [DOI] [PubMed] [Google Scholar]
  5. Guiton M., Gunn-Moore F. J., Stitt T. N., Yancopoulos G. D., Tavaré J. M. Identification of in vivo brain-derived neurotrophic factor-stimulated autophosphorylation sites on the TrkB receptor tyrosine kinase by site-directed mutagenesis. J Biol Chem. 1994 Dec 2;269(48):30370–30377. [PubMed] [Google Scholar]
  6. Heasley L. E., Johnson G. L. Regulation of protein kinase C by nerve growth factor, epidermal growth factor, and phorbol esters in PC12 pheochromocytoma cells. J Biol Chem. 1989 May 25;264(15):8646–8652. [PubMed] [Google Scholar]
  7. Kaplan D. R., Stephens R. M. Neurotrophin signal transduction by the Trk receptor. J Neurobiol. 1994 Nov;25(11):1404–1417. doi: 10.1002/neu.480251108. [DOI] [PubMed] [Google Scholar]
  8. Lamballe F., Tapley P., Barbacid M. trkC encodes multiple neurotrophin-3 receptors with distinct biological properties and substrate specificities. EMBO J. 1993 Aug;12(8):3083–3094. doi: 10.1002/j.1460-2075.1993.tb05977.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moule S. K., Edgell N. J., Welsh G. I., Diggle T. A., Foulstone E. J., Heesom K. J., Proud C. G., Denton R. M. Multiple signalling pathways involved in the stimulation of fatty acid and glycogen synthesis by insulin in rat epididymal fat cells. Biochem J. 1995 Oct 15;311(Pt 2):595–601. doi: 10.1042/bj3110595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pagès G., Lenormand P., L'Allemain G., Chambard J. C., Meloche S., Pouysségur J. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8319–8323. doi: 10.1073/pnas.90.18.8319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schlessinger J. SH2/SH3 signaling proteins. Curr Opin Genet Dev. 1994 Feb;4(1):25–30. doi: 10.1016/0959-437x(94)90087-6. [DOI] [PubMed] [Google Scholar]
  12. Sözeri O., Vollmer K., Liyanage M., Frith D., Kour G., Mark G. E., 3rd, Stabel S. Activation of the c-Raf protein kinase by protein kinase C phosphorylation. Oncogene. 1992 Nov;7(11):2259–2262. [PubMed] [Google Scholar]
  13. Traverse S., Gomez N., Paterson H., Marshall C., Cohen P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem J. 1992 Dec 1;288(Pt 2):351–355. doi: 10.1042/bj2880351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tsoulfas P., Soppet D., Escandon E., Tessarollo L., Mendoza-Ramirez J. L., Rosenthal A., Nikolics K., Parada L. F. The rat trkC locus encodes multiple neurogenic receptors that exhibit differential response to neurotrophin-3 in PC12 cells. Neuron. 1993 May;10(5):975–990. doi: 10.1016/0896-6273(93)90212-a. [DOI] [PubMed] [Google Scholar]
  15. Tsoulfas P., Stephens R. M., Kaplan D. R., Parada L. F. TrkC isoforms with inserts in the kinase domain show impaired signaling responses. J Biol Chem. 1996 Mar 8;271(10):5691–5697. doi: 10.1074/jbc.271.10.5691. [DOI] [PubMed] [Google Scholar]
  16. Valenzuela D. M., Maisonpierre P. C., Glass D. J., Rojas E., Nuñez L., Kong Y., Gies D. R., Stitt T. N., Ip N. Y., Yancopoulos G. D. Alternative forms of rat TrkC with different functional capabilities. Neuron. 1993 May;10(5):963–974. doi: 10.1016/0896-6273(93)90211-9. [DOI] [PubMed] [Google Scholar]
  17. Welsh G. I., Foulstone E. J., Young S. W., Tavaré J. M., Proud C. G. Wortmannin inhibits the effects of insulin and serum on the activities of glycogen synthase kinase-3 and mitogen-activated protein kinase. Biochem J. 1994 Oct 1;303(Pt 1):15–20. doi: 10.1042/bj3030015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Young S. W., Dickens M., Tavaré J. M. Differentiation of PC12 cells in response to a cAMP analogue is accompanied by sustained activation of mitogen-activated protein kinase. Comparison with the effects of insulin, growth factors and phorbol esters. FEBS Lett. 1994 Jan 31;338(2):212–216. doi: 10.1016/0014-5793(94)80367-6. [DOI] [PubMed] [Google Scholar]
  19. Zirrgiebel U., Ohga Y., Carter B., Berninger B., Inagaki N., Thoenen H., Lindholm D. Characterization of TrkB receptor-mediated signaling pathways in rat cerebellar granule neurons: involvement of protein kinase C in neuronal survival. J Neurochem. 1995 Nov;65(5):2241–2250. doi: 10.1046/j.1471-4159.1995.65052241.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES