Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 15;322(Pt 1):213–221. doi: 10.1042/bj3220213

Biosynthesis of 'essential' amino acids by scleractinian corals.

L M Fitzgerald 1, A M Szmant 1
PMCID: PMC1218179  PMID: 9078264

Abstract

Animals rely on their diet for amino acids that they are incapable either of synthesizing or of synthesizing in sufficient quantities to meet metabolic needs. These are the so-called 'essential amino acids'. This set of amino acids is similar among the vertebrates and many of the invertebrates. Previously, no information was available for amino acid synthesis by the most primitive invertebrates, the Cnidaria. The purpose of this study was to examine amino acid synthesis by representative cnidarians within the Order Scleractinia. Three species of zooxanthellate reef coral, Montastraea faveolata, Acropora cervicornis and Porites divaricata, and two species of non-zooxanthellate coral, Tubastrea coccinea and Astrangia poculata, were incubated with 14C-labelled glucose or with the 14C-labelled amino acids glutamic acid, lysine or valine. Radiolabel tracer was followed into protein amino acids. A total of 17 amino acids, including hydroxyproline, were distinguishable by the techniques used. Of these, only threonine was not found radiolabelled in any of the samples. We could not detect tryptophan or cysteine, nor distinguish between the amino acid pairs glutamic acid and glutamine, or aspartic acid and asparagine. Eight amino acids normally considered essential for animals were made by the five corals tested, although some of them were made only in small quantities. These eight amino acids are valine, isoleucine, leucine, tyrosine, phenylalanine histidine, methionine and lysine. The ability of cnidarians to synthesize these amino acids could be yet another indicator of a separate evolutionary history of the cnidarians from the rest of the Metazoa.

Full Text

The Full Text of this article is available as a PDF (453.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AWAPARA J., CAMPBELL J. W. UTILIZATION OF C14O2 FOR THE FORMATION OF SOME AMINO ACIDS IN THREE INVERTEBRATES. Comp Biochem Physiol. 1964 Feb;11:231–235. doi: 10.1016/0010-406x(64)90166-5. [DOI] [PubMed] [Google Scholar]
  2. Allen W. V., Kilgore J. The essential amino acid requirements of the red abalone, Haliotis rufescens. Comp Biochem Physiol A Comp Physiol. 1975 Apr 1;50(4):771–775. doi: 10.1016/0300-9629(75)90144-9. [DOI] [PubMed] [Google Scholar]
  3. Field K. G., Olsen G. J., Lane D. J., Giovannoni S. J., Ghiselin M. T., Raff E. C., Pace N. R., Raff R. A. Molecular phylogeny of the animal kingdom. Science. 1988 Feb 12;239(4841 Pt 1):748–753. doi: 10.1126/science.3277277. [DOI] [PubMed] [Google Scholar]
  4. HALVER J. E., DELONG D. C., MERTZ E. T. Nutrition of salmonoid fishes. V. Classification of essential amino acids for Chinook salmon. J Nutr. 1957 Sep 10;63(1):95–105. doi: 10.1093/jn/63.1.95. [DOI] [PubMed] [Google Scholar]
  5. HAMMEN C. S., LUM S. C. Carbon dioxide fixation in marine invertebrates. III. The main pathway in flatworms. J Biol Chem. 1962 Aug;237:2419–2422. [PubMed] [Google Scholar]
  6. HAMMEN C. S., WILBUR K. M. Carbon dioxide fixation in marine invertebrates. I. The main pathway in the oyster. J Biol Chem. 1959 May;234(5):1268–1271. [PubMed] [Google Scholar]
  7. Kasting R., McGinnis A. J. Radioisotopes and the determination of nutrient requirements. Ann N Y Acad Sci. 1966 Oct 7;139(1):98–107. doi: 10.1111/j.1749-6632.1966.tb41188.x. [DOI] [PubMed] [Google Scholar]
  8. Lake J. A. Origin of the Metazoa. Proc Natl Acad Sci U S A. 1990 Jan;87(2):763–766. doi: 10.1073/pnas.87.2.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Muscatine L. Glycerol excretion by symbiotic algae from corals and tridacna and its control by the host. Science. 1967 Apr 28;156(3774):516–519. doi: 10.1126/science.156.3774.516. [DOI] [PubMed] [Google Scholar]
  10. Patterson C. Metazoan phylogeny. Reassessing relationships. Nature. 1990 Mar 15;344(6263):199–200. doi: 10.1038/344199a0. [DOI] [PubMed] [Google Scholar]
  11. Pierce S. K., Jr, Minasian L. L., Jr Water balance of a euryhaline sea anemone, Diadumene leucolena. Comp Biochem Physiol A Comp Physiol. 1974 Sep 1;49(1A):159–167. doi: 10.1016/0300-9629(74)90551-9. [DOI] [PubMed] [Google Scholar]
  12. Powell E. N., Kendall J. J., Jr, Connor S. J., Zastrow C. E., Bright T. J. Effect of eight outer continental shelf drilling muds on the calcification rate and free amino acid pool of the coral Acropora cervicornis. Bull Environ Contam Toxicol. 1984 Sep;33(3):362–372. doi: 10.1007/BF01625556. [DOI] [PubMed] [Google Scholar]
  13. ROTHSTEIN M., TOMLINSON G. Nematode biochemistry. II. Biosynthesis of amino acids. Biochim Biophys Acta. 1962 Oct 8;63:471–480. doi: 10.1016/0006-3002(62)90110-5. [DOI] [PubMed] [Google Scholar]
  14. Santavy D. L., Willenz P., Colwell R. R. Phenotypic study of bacteria associated with the caribbean sclerosponge, Ceratoporella nicholsoni. Appl Environ Microbiol. 1990 Jun;56(6):1750–1762. doi: 10.1128/aem.56.6.1750-1762.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shick J. M. Free amino aicds in Aurelia aurita scyphistomae from Corpus Christi, Texas. Comp Biochem Physiol B. 1976;53(1):1–2. doi: 10.1016/0305-0491(76)90085-7. [DOI] [PubMed] [Google Scholar]
  16. Von Holt C. Uptake of glycine and release of nucleoside-polyphosphates by Zooxanthellae. Comp Biochem Physiol. 1968 Sep;26(3):1071–1079. doi: 10.1016/0010-406x(68)90027-3. [DOI] [PubMed] [Google Scholar]
  17. Von Holt C., Von Holt M. The secretion of organic compounds by zooxanthellae isolated from various types of Zoanthus. Comp Biochem Physiol. 1968 Jan;24(1):83–92. doi: 10.1016/0010-406x(68)90960-2. [DOI] [PubMed] [Google Scholar]
  18. Von Holt C., Von Holt M. Transfer of photosynthetic products from zooxanthellae to coelenterate hosts. Comp Biochem Physiol. 1968 Jan;24(1):73–81. doi: 10.1016/0010-406x(68)90959-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES