Abstract
The aim of this study was to determine the role of the phosphorylation state of glycogen synthase and glycogen phosphorylase in the regulation of muscle glycogen repletion in fasted animals recovering from high-intensity exercise. Groups of rats were swum to exhaustion and allowed to recover for up to 120 min without access to food. Swimming to exhaustion caused substantial glycogen breakdown and lactate accumulation in the red, white and mixed gastrocnemius muscles, whereas the glycogen content in the soleus muscle remained stable. During the first 40 min of recovery, significant repletion of glycogen occurred in all muscles examined except the soleus muscle. At the onset of recovery, the activity ratios and fractional velocities of glycogen synthase in the red, white and mixed gastrocnemius muscles were higher than basal, but returned to pre-exercise levels within 20 min after exercise. In contrast, after exercise the activity ratios of glycogen phosphorylase in the same muscles were lower than basal, and increased to pre-exercise levels within 20 min. This pattern of changes in glycogen synthase and phosphorylase activities, never reported before, suggests that the integrated regulation of the phosphorylation state of both glycogen synthase and phosphorylase might be involved in the control of glycogen deposition after high-intensity exercise.
Full Text
The Full Text of this article is available as a PDF (386.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Astrand P. O., Hultman E., Juhlin-Dannfelt A., Reynolds G. Disposal of lactate during and after strenuous exercise in humans. J Appl Physiol (1985) 1986 Jul;61(1):338–343. doi: 10.1152/jappl.1986.61.1.338. [DOI] [PubMed] [Google Scholar]
- Bak J. F., Pedersen O. Exercise-enhanced activation of glycogen synthase in human skeletal muscle. Am J Physiol. 1990 Jun;258(6 Pt 1):E957–E963. doi: 10.1152/ajpendo.1990.258.6.E957. [DOI] [PubMed] [Google Scholar]
- Bloch G., Chase J. R., Meyer D. B., Avison M. J., Shulman G. I., Shulman R. G. In vivo regulation of rat muscle glycogen resynthesis after intense exercise. Am J Physiol. 1994 Jan;266(1 Pt 1):E85–E91. doi: 10.1152/ajpendo.1994.266.1.E85. [DOI] [PubMed] [Google Scholar]
- Challiss R. A., Crabtree B., Newsholme E. A. Hormonal regulation of the rate of the glycogen/glucose-1-phosphate cycle in skeletal muscle. Eur J Biochem. 1987 Feb 16;163(1):205–210. doi: 10.1111/j.1432-1033.1987.tb10756.x. [DOI] [PubMed] [Google Scholar]
- Chasiotis D., Sahlin K., Hultman E. Regulation of glycogenolysis in human muscle at rest and during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Sep;53(3):708–715. doi: 10.1152/jappl.1982.53.3.708. [DOI] [PubMed] [Google Scholar]
- Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
- Conlee R. K., Hickson R. C., Winder W. W., Hagberg J. M., Holloszy J. O. Regulation of glycogen resynthesis in muscles of rats following exercise. Am J Physiol. 1978 Sep;235(3):R145–R150. doi: 10.1152/ajpregu.1978.235.3.R145. [DOI] [PubMed] [Google Scholar]
- Conlee R. K., McLane J. A., Rennie M. J., Winder W. W., Holloszy J. O. Reversal of phosphorylase activation in muscle despite continued contractile activity. Am J Physiol. 1979 Nov;237(5):R291–R296. doi: 10.1152/ajpregu.1979.237.5.R291. [DOI] [PubMed] [Google Scholar]
- DANFORTH W. H. GLYCOGEN SYNTHETASE ACTIVITY IN SKELETAL MUSCLE. INTERCONVERSION OF TWO FORMS AND CONTROL OF GLYCOGEN SYNTHESIS. J Biol Chem. 1965 Feb;240:588–593. [PubMed] [Google Scholar]
- Dietz M. R., Chiasson J. L., Soderling T. R., Exton J. H. Epinephrine regulation of skeletal muscle glycogen metabolism. Studies utilizing the perfused rat hindlimb preparation. J Biol Chem. 1980 Mar 25;255(6):2301–2307. [PubMed] [Google Scholar]
- Favier R. J., Koubi H. E., Mayet M. H., Semporé B., Simi B., Flandrois R. Effects of gluconeogenic precursor flux alterations on glycogen resynthesis after prolonged exercise. J Appl Physiol (1985) 1987 Nov;63(5):1733–1738. doi: 10.1152/jappl.1987.63.5.1733. [DOI] [PubMed] [Google Scholar]
- Fell R. D., McLane J. A., Winder W. W., Holloszy J. O. Preferential resynthesis of muscle glycogen in fasting rats after exhausting exercise. Am J Physiol. 1980 May;238(5):R328–R332. doi: 10.1152/ajpregu.1980.238.5.R328. [DOI] [PubMed] [Google Scholar]
- Fournier P. A., Guderley H. Metabolic fate of lactate after vigorous activity in the leopard frog, Rana pipiens. Am J Physiol. 1992 Feb;262(2 Pt 2):R245–R254. doi: 10.1152/ajpregu.1992.262.2.R245. [DOI] [PubMed] [Google Scholar]
- Gaesser G. A., Brooks G. A. Glycogen repletion following continuous and intermittent exercise to exhaustion. J Appl Physiol Respir Environ Exerc Physiol. 1980 Oct;49(4):722–728. doi: 10.1152/jappl.1980.49.4.722. [DOI] [PubMed] [Google Scholar]
- Gilboe D. P., Larson K. L., Nuttall F. Q. Radioactive method for the assay of glycogen phosphorylases. Anal Biochem. 1972 May;47(1):20–27. doi: 10.1016/0003-2697(72)90274-6. [DOI] [PubMed] [Google Scholar]
- Gilboe D. P., Nuttall F. Q. The role of ATP and glucose 6-phosphate in the regulation of glycogen synthetase D phosphatase. Biochem Biophys Res Commun. 1972 Aug 21;48(4):898–906. doi: 10.1016/0006-291x(72)90693-6. [DOI] [PubMed] [Google Scholar]
- Goldfarb A. H., Bruno J. F., Buckenmeyer P. J. Intensity and duration of exercise effects on skeletal muscle cAMP, phosphorylase, and glycogen. J Appl Physiol (1985) 1989 Jan;66(1):190–194. doi: 10.1152/jappl.1989.66.1.190. [DOI] [PubMed] [Google Scholar]
- Gross S. R., Mayer S. E. Regulation of phosphorylase B to A conversion in muscle. Life Sci. 1974 Feb 1;14(3):401–414. doi: 10.1016/0024-3205(74)90355-5. [DOI] [PubMed] [Google Scholar]
- Hermansen L., Vaage O. Lactate disappearance and glycogen synthesis in human muscle after maximal exercise. Am J Physiol. 1977 Nov;233(5):E422–E429. doi: 10.1152/ajpendo.1977.233.5.E422. [DOI] [PubMed] [Google Scholar]
- Hiraga A., Cohen P. Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G by cyclic-AMP-dependent protein kinase promotes translocation of the phosphatase from glycogen to cytosol in rabbit skeletal muscle. Eur J Biochem. 1986 Dec 15;161(3):763–769. doi: 10.1111/j.1432-1033.1986.tb10505.x. [DOI] [PubMed] [Google Scholar]
- Holmes P. A., Mansour T. E. Glucose as a regulator of glycogen phosphorylase in rat diaphragm. II. Effect of glucose and related compounds on phosphorylase phosphatase. Biochim Biophys Acta. 1968 Mar 11;156(2):275–284. doi: 10.1016/0304-4165(68)90256-0. [DOI] [PubMed] [Google Scholar]
- Holness M. J., Sugden M. C. Glucose disposal by skeletal muscle in response to re-feeding after progressive starvation. Biochem J. 1991 Jul 15;277(Pt 2):429–433. doi: 10.1042/bj2770429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurd S. S., Teller D., Fischer E. H. Probable formation of partially phosphorylated intermediates in the interconversions of phosphorylase A and B. Biochem Biophys Res Commun. 1966 Jul 6;24(1):79–84. doi: 10.1016/0006-291x(66)90413-x. [DOI] [PubMed] [Google Scholar]
- Ivey P. A., Gaesser G. A. Postexercise muscle and liver glycogen metabolism in male and female rats. J Appl Physiol (1985) 1987 Mar;62(3):1250–1254. doi: 10.1152/jappl.1987.62.3.1250. [DOI] [PubMed] [Google Scholar]
- Ivy J. L. Muscle glycogen synthesis before and after exercise. Sports Med. 1991 Jan;11(1):6–19. doi: 10.2165/00007256-199111010-00002. [DOI] [PubMed] [Google Scholar]
- KREBS E. G., GRAVES D. J., FISCHER E. H. Factors affecting the activity of muscle phosphorylase b kinase. J Biol Chem. 1959 Nov;234:2867–2873. [PubMed] [Google Scholar]
- KREBS E. G., LOVE D. S., BRATVOLD G. E., TRAYSER K. A., MEYER W. L., FISCHER E. H. PURIFICATION AND PROPERTIES OF RABBIT SKELETAL MUSCLE PHOSPHORYLASE B KINASE. Biochemistry. 1964 Aug;3:1022–1033. doi: 10.1021/bi00896a003. [DOI] [PubMed] [Google Scholar]
- Kochan R. G., Lamb D. R., Lutz S. A., Perrill C. V., Reimann E. M., Schlender K. K. Glycogen synthase activation in human skeletal muscle: effects of diet and exercise. Am J Physiol. 1979 Jun;236(6):E660–E666. doi: 10.1152/ajpendo.1979.236.6.E660. [DOI] [PubMed] [Google Scholar]
- Kochan R. G., Lamb D. R., Reimann E. M., Schlender K. K. Modified assays to detect activation of glycogen synthase following exercise. Am J Physiol. 1981 Feb;240(2):E197–E202. doi: 10.1152/ajpendo.1981.240.2.E197. [DOI] [PubMed] [Google Scholar]
- Maehlum S., Hermansen L. Muscle glycogen concentration during recovery after prolonged severe exercise in fasting subjects. Scand J Clin Lab Invest. 1978 Oct;38(6):557–560. doi: 10.1080/00365517809108819. [DOI] [PubMed] [Google Scholar]
- Maehlum S., Høstmark A. T., Hermansen L. Synthesis of muscle glycogen during recovery after prolonged severe exercise in diabetic and non-diabetic subjects. Scand J Clin Lab Invest. 1977 Jun;37(4):309–316. doi: 10.3109/00365517709092634. [DOI] [PubMed] [Google Scholar]
- Maltin C. A., Delday M. I., Baillie A. G., Grubb D. A., Garlick P. J. Fiber-type composition of nine rat muscles. I. Changes during the first year of life. Am J Physiol. 1989 Dec;257(6 Pt 1):E823–E827. doi: 10.1152/ajpendo.1989.257.6.E823. [DOI] [PubMed] [Google Scholar]
- Martensen T. M., Brotherton J. E., Graves D. J. Kinetic studies of the activation of muscle phosphorylase phosphatase. J Biol Chem. 1973 Dec 25;248(24):8329–8336. [PubMed] [Google Scholar]
- McArdle W. D., Montoye H. J. Reliability of exhaustive swimming in the laboratory rat. J Appl Physiol. 1966 Jul;21(4):1431–1434. doi: 10.1152/jappl.1966.21.4.1431. [DOI] [PubMed] [Google Scholar]
- McLane J. A., Holloszy J. O. Glycogen synthesis from lactate in the three types of skeletal muscle. J Biol Chem. 1979 Jul 25;254(14):6548–6553. [PubMed] [Google Scholar]
- Meinke M. H., Edstrom R. D. Muscle glycogenolysis. Regulation of the cyclic interconversion of phosphorylase a and phosphorylase b. J Biol Chem. 1991 Feb 5;266(4):2259–2266. [PubMed] [Google Scholar]
- Mellgren R. L., Coulson M. Coordinated feedback regulation of muscle glycogen metabolism: inhibition of purified phosphorylase phosphatase by glycogen. Biochem Biophys Res Commun. 1983 Jul 18;114(1):148–154. doi: 10.1016/0006-291x(83)91606-6. [DOI] [PubMed] [Google Scholar]
- Morange M., Buc H. The interplay between covalent and non-covalent regulation of glycogen phosphorylase. The role of different effectors of phosphorylase b on the phosphorylase b to a conversion rate. Biochimie. 1979;61(5-6):633–643. doi: 10.1016/s0300-9084(79)80161-3. [DOI] [PubMed] [Google Scholar]
- Nikolovski S., Faulkner D. L., Palmer T. N., Fournier P. A. Muscle glycogen repletion from endogenous carbon sources during recovery from high intensity exercise in the fasted rat. Acta Physiol Scand. 1996 Aug;157(4):427–434. doi: 10.1046/j.1365-201X.1996.507273000.x. [DOI] [PubMed] [Google Scholar]
- Pagliassotti M. J., Donovan C. M. Glycogenesis from lactate in rabbit skeletal muscle fiber types. Am J Physiol. 1990 Apr;258(4 Pt 2):R903–R911. doi: 10.1152/ajpregu.1990.258.4.R903. [DOI] [PubMed] [Google Scholar]
- Piras R., Staneloni R. In vivo regulation of rat muscle glycogen synthetase activity. Biochemistry. 1969 May;8(5):2153–2160. doi: 10.1021/bi00833a056. [DOI] [PubMed] [Google Scholar]
- Ren J. M., Gulve E. A., Cartee G. D., Holloszy J. O. Hypoxia causes glycogenolysis without an increase in percent phosphorylase a in rat skeletal muscle. Am J Physiol. 1992 Dec;263(6 Pt 1):E1086–E1091. doi: 10.1152/ajpendo.2006.263.6.E1086. [DOI] [PubMed] [Google Scholar]
- Ren J. M., Hultman E. Phosphorylase activity in needle biopsy samples--factors influencing transformation. Acta Physiol Scand. 1988 May;133(1):109–114. doi: 10.1111/j.1748-1716.1988.tb08386.x. [DOI] [PubMed] [Google Scholar]
- Richter E. A., Ruderman N. B., Gavras H., Belur E. R., Galbo H. Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Am J Physiol. 1982 Jan;242(1):E25–E32. doi: 10.1152/ajpendo.1982.242.1.E25. [DOI] [PubMed] [Google Scholar]
- Ryan C., Ferguson K., Radziuk J. Glucose dynamics and gluconeogenesis during and after prolonged swimming in rats. J Appl Physiol (1985) 1993 May;74(5):2404–2411. doi: 10.1152/jappl.1993.74.5.2404. [DOI] [PubMed] [Google Scholar]
- Shiota M., Golden S., Katz J. Lactate metabolism in the perfused rat hindlimb. Biochem J. 1984 Sep 1;222(2):281–292. doi: 10.1042/bj2220281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soderling T. R., Jett M. F., Hutson N. J., Khatra B. S. Regulation of glycogen synthase. Phosphorylation specificities of cAMP-dependent and cAMP-independent kinases for skeletal muscle synthase. J Biol Chem. 1977 Nov 10;252(21):7517–7524. [PubMed] [Google Scholar]
- Thomas J. A., Schlender K. K., Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968 Oct 24;25(1):486–499. doi: 10.1016/0003-2697(68)90127-9. [DOI] [PubMed] [Google Scholar]
- Tu J. I., Graves D. J. Inhibition of the phosphorylase kinase catalyzed reaction by glucose-6-P. Biochem Biophys Res Commun. 1973 Jul 2;53(1):59–65. doi: 10.1016/0006-291x(73)91400-9. [DOI] [PubMed] [Google Scholar]
- Villa-Moruzzi E. Effects of streptozotocin-diabetes, fasting and adrenaline on phosphorylase phosphatase activities of rat skeletal muscle. Mol Cell Endocrinol. 1986 Sep;47(1-2):43–48. doi: 10.1016/0303-7207(86)90014-6. [DOI] [PubMed] [Google Scholar]
- Villar-Palasi C. Oligo- and polysaccharide inhibition of muscle transferase D phosphatase. Ann N Y Acad Sci. 1969 Oct 14;166(2):719–730. doi: 10.1111/j.1749-6632.1969.tb46429.x. [DOI] [PubMed] [Google Scholar]
- Villar-Palasi C. Substrate specific activation by glucose 6-phosphate of the dephosphorylation of muscle glycogen synthase. Biochim Biophys Acta. 1991 Nov 12;1095(3):261–267. doi: 10.1016/0167-4889(91)90109-b. [DOI] [PubMed] [Google Scholar]
- Zachwieja J. J., Costill D. L., Pascoe D. D., Robergs R. A., Fink W. J. Influence of muscle glycogen depletion on the rate of resynthesis. Med Sci Sports Exerc. 1991 Jan;23(1):44–48. [PubMed] [Google Scholar]