Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Mar 1;322(Pt 2):353–363. doi: 10.1042/bj3220353

Induction of cytosolic phospholipase A2 activity by phosphatidic acid and diglycerides in permeabilized human neutrophils: interrelationship between phospholipases D and A2.

S A Bauldry 1, R E Wooten 1
PMCID: PMC1218199  PMID: 9065750

Abstract

Relationships between phospholipases are poorly understood, but phosphatidic acid (PA) and diglycerides (DGs), produced by phospholipase D (PLD) and phosphatidate phosphohydrolase actions, might function as second messengers coupling cell stimulation to cellular responses. This study investigates the role of PLD-mediated PA and DG formation in inducing phospholipase A2 (PLA2) activity in intact human neutrophils (PMNs) and in PMNs permeabilized with Staphylococcus aureus alpha-toxin. PMNs were labelled with [3H]arachidonic acid (AA) to assess AA release and metabolism and diacylglycerol formation, or with [3H]1-O-hexadecyl-2-lyso-glycerophosphatidylcholine for the determination of platelet-activating factor (PAF), PA and alkylacylglycerol production. In intact PMNs primed with tumour necrosis factor alpha before stimulation with N-formyl-Met-Leu-Phe, AA release and metabolism and PAF formation increased in parallel with enhanced PA and DG formation, and inhibition of PA and DG production led to a decrease in both AA release and PAF accumulation. In alpha-toxin-permeabilized PMNs, AA release and PAF production result from the specific activation of cytosolic PLA2 (cPLA2). In this system, PA and DG formation were always present when cPLA2 activation occurred; blocking PA and DG production inhibited AA release and PAF accumulation. Adding either PA or DG back to permeabilized cells (with endogenous PA and DG formation blocked) led to a partial restoration of AA release and PAF formation; a combination of PA and DGs reconstituted full cPLA2 activity. These results strongly suggest that products of PLD participate in activating cPLA2 in PMNs.

Full Text

The Full Text of this article is available as a PDF (843.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agwu D. E., McPhail L. C., Chabot M. C., Daniel L. W., Wykle R. L., McCall C. E. Choline-linked phosphoglycerides. A source of phosphatidic acid and diglycerides in stimulated neutrophils. J Biol Chem. 1989 Jan 25;264(3):1405–1413. [PubMed] [Google Scholar]
  2. Anderson B. O., Moore E. E., Banerjee A. Phospholipase A2 regulates critical inflammatory mediators of multiple organ failure. J Surg Res. 1994 Feb;56(2):199–205. doi: 10.1006/jsre.1994.1032. [DOI] [PubMed] [Google Scholar]
  3. Asaoka Y., Nakamura S., Yoshida K., Nishizuka Y. Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci. 1992 Oct;17(10):414–417. doi: 10.1016/0968-0004(92)90011-w. [DOI] [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. Bader M. F., Thiersé D., Aunis D., Ahnert-Hilger G., Gratzl M. Characterization of hormone and protein release from alpha-toxin-permeabilized chromaffin cells in primary culture. J Biol Chem. 1986 May 5;261(13):5777–5783. [PubMed] [Google Scholar]
  6. Balsinde J., Fernández B., Solís-Herruzo J. A. Ethanol inhibits zymosan-stimulated eicosanoid production in mouse peritoneal macrophages. Biochim Biophys Acta. 1994 Jan 3;1210(2):195–201. doi: 10.1016/0005-2760(94)90121-x. [DOI] [PubMed] [Google Scholar]
  7. Bauldry S. A., Bass D. A., Cousart S. L., McCall C. E. Tumor necrosis factor alpha priming of phospholipase D in human neutrophils. Correlation between phosphatidic acid production and superoxide generation. J Biol Chem. 1991 Mar 5;266(7):4173–4179. [PubMed] [Google Scholar]
  8. Bauldry S. A., Elsey K. L., Bass D. A. Activation of NADPH oxidase and phospholipase D in permeabilized human neutrophils. Correlation between oxidase activation and phosphatidic acid production. J Biol Chem. 1992 Dec 15;267(35):25141–25152. [PubMed] [Google Scholar]
  9. Bauldry S. A., McCall C. E., Cousart S. L., Bass D. A. Tumor necrosis factor-alpha priming of phospholipase A2 activation in human neutrophils. An alternative mechanism of priming. J Immunol. 1991 Feb 15;146(4):1277–1285. [PubMed] [Google Scholar]
  10. Bauldry S. A., Nasrallah V. N., Bass D. A. Activation of NADPH oxidase in human neutrophils permeabilized with Staphylococcus aureus alpha-toxin. A lower Km when the enzyme is activated in situ. J Biol Chem. 1992 Jan 5;267(1):323–330. [PubMed] [Google Scholar]
  11. Bauldry S. A., Wooten R. E., Bass D. A. Activation of cytosolic phospholipase A2 in permeabilized human neutrophils. Biochim Biophys Acta. 1996 Jan 19;1299(2):223–234. doi: 10.1016/0005-2760(95)00207-3. [DOI] [PubMed] [Google Scholar]
  12. Bauldry S. A., Wooten R. E. Leukotriene B4 and platelet activating factor production in permeabilized human neutrophils: role of cytosolic PLA2 in LTB4 and PAF generation. Biochim Biophys Acta. 1996 Sep 6;1303(1):63–73. doi: 10.1016/0005-2760(96)00077-x. [DOI] [PubMed] [Google Scholar]
  13. Bauldry S. A., Wykle R. L., Bass D. A. Differential actions of diacyl- and alkylacylglycerols in priming phospholipase A2, 5-lipoxygenase and acetyltransferase activation in human neutrophils. Biochim Biophys Acta. 1991 Jul 9;1084(2):178–184. doi: 10.1016/0005-2760(91)90218-7. [DOI] [PubMed] [Google Scholar]
  14. Bauldry S. A., Wykle R. L., Bass D. A. Phospholipase A2 activation in human neutrophils. Differential actions of diacylglycerols and alkylacylglycerols in priming cells for stimulation by N-formyl-Met-Leu-Phe. J Biol Chem. 1988 Nov 15;263(32):16787–16795. [PubMed] [Google Scholar]
  15. Bhakdi S., Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev. 1991 Dec;55(4):733–751. doi: 10.1128/mr.55.4.733-751.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Billah M. M., Eckel S., Mullmann T. J., Egan R. W., Siegel M. I. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phosphatidate phosphohydrolase in signal transduction. J Biol Chem. 1989 Oct 15;264(29):17069–17077. [PubMed] [Google Scholar]
  17. Booz G. W., Taher M. M., Baker K. M., Singer H. A. Angiotensin II induces phosphatidic acid formation in neonatal rat cardiac fibroblasts: evaluation of the roles of phospholipases C and D. Mol Cell Biochem. 1994 Dec 21;141(2):135–143. doi: 10.1007/BF00926177. [DOI] [PubMed] [Google Scholar]
  18. Buhl A. M., Avdi N., Worthen G. S., Johnson G. L. Mapping of the C5a receptor signal transduction network in human neutrophils. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9190–9194. doi: 10.1073/pnas.91.19.9190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cabot M. C., Jaken S. Structural and chemical specificity of diacylglycerols for protein kinase C activation. Biochem Biophys Res Commun. 1984 Nov 30;125(1):163–169. doi: 10.1016/s0006-291x(84)80349-6. [DOI] [PubMed] [Google Scholar]
  20. Chilton F. H., Murphy R. C. Remodeling of arachidonate-containing phosphoglycerides within the human neutrophil. J Biol Chem. 1986 Jun 15;261(17):7771–7777. [PubMed] [Google Scholar]
  21. Clark J. D., Lin L. L., Kriz R. W., Ramesha C. S., Sultzman L. A., Lin A. Y., Milona N., Knopf J. L. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell. 1991 Jun 14;65(6):1043–1051. doi: 10.1016/0092-8674(91)90556-e. [DOI] [PubMed] [Google Scholar]
  22. Daniel L. W., Small G. W., Schmitt J. D., Marasco C. J., Ishaq K., Piantadosi C. Alkyl-linked diglycerides inhibit protein kinase C activation by diacylglycerols. Biochem Biophys Res Commun. 1988 Feb 29;151(1):291–297. doi: 10.1016/0006-291x(88)90592-x. [DOI] [PubMed] [Google Scholar]
  23. Daum G., Eisenmann-Tappe I., Fries H. W., Troppmair J., Rapp U. R. The ins and outs of Raf kinases. Trends Biochem Sci. 1994 Nov;19(11):474–480. doi: 10.1016/0968-0004(94)90133-3. [DOI] [PubMed] [Google Scholar]
  24. Dawson R. M., Hemington N. L., Irvine R. F. Diacylglycerol potentiates phospholipase attack upon phospholipid bilayers: possible connection with cell stimulation. Biochem Biophys Res Commun. 1983 Nov 30;117(1):196–201. doi: 10.1016/0006-291x(83)91560-7. [DOI] [PubMed] [Google Scholar]
  25. Doerfler M. E., Weiss J., Clark J. D., Elsbach P. Bacterial lipopolysaccharide primes human neutrophils for enhanced release of arachidonic acid and causes phosphorylation of an 85-kD cytosolic phospholipase A2. J Clin Invest. 1994 Apr;93(4):1583–1591. doi: 10.1172/JCI117138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. English D. Involvement of phosphatidic acid, phosphatidate phosphohydrolase, and inositide-specific phospholipase D in neutrophil stimulus-response pathways. J Lab Clin Med. 1992 Oct;120(4):520–526. [PubMed] [Google Scholar]
  27. Ghosh S., Strum J. C., Sciorra V. A., Daniel L., Bell R. M. Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J Biol Chem. 1996 Apr 5;271(14):8472–8480. doi: 10.1074/jbc.271.14.8472. [DOI] [PubMed] [Google Scholar]
  28. Godfrey R. W., Manzi R. M., Clark M. A., Hoffstein S. T. Stimulus-specific induction of phospholipid and arachidonic acid metabolism in human neutrophils. J Cell Biol. 1987 Apr;104(4):925–932. doi: 10.1083/jcb.104.4.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Grinstein S., Butler J. R., Furuya W., L'Allemain G., Downey G. P. Chemotactic peptides induce phosphorylation and activation of MEK-1 in human neutrophils. J Biol Chem. 1994 Jul 29;269(30):19313–19320. [PubMed] [Google Scholar]
  30. Haines K. A., Giedd K. N., Rich A. M., Korchak H. M., Weissmann G. The leukotriene B4 paradox: neutrophils can, but will not, respond to ligand-receptor interactions by forming leukotriene B4 or its omega-metabolites. Biochem J. 1987 Jan 1;241(1):55–62. doi: 10.1042/bj2410055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hashizume T., Taniguchi M., Sato T., Fujii T. Arachidonic acid liberation induced by phosphatidic acid endogenously generated from membrane phospholipids in rabbit platelets. Biochim Biophys Acta. 1994 Mar 31;1221(2):179–184. doi: 10.1016/0167-4889(94)90011-6. [DOI] [PubMed] [Google Scholar]
  32. Haslam R. J., Coorssen J. R. Evidence that activation of phospholipase D can mediate secretion from permeabilized platelets. Adv Exp Med Biol. 1993;344:149–164. doi: 10.1007/978-1-4615-2994-1_11. [DOI] [PubMed] [Google Scholar]
  33. Henderson W. R., Jr The role of leukotrienes in inflammation. Ann Intern Med. 1994 Nov 1;121(9):684–697. doi: 10.7326/0003-4819-121-9-199411010-00010. [DOI] [PubMed] [Google Scholar]
  34. Knight D. E., Scrutton M. C. Gaining access to the cytosol: the technique and some applications of electropermeabilization. Biochem J. 1986 Mar 15;234(3):497–506. doi: 10.1042/bj2340497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Korchak H. M., Vosshall L. B., Haines K. A., Wilkenfeld C., Lundquist K. F., Weissmann G. Activation of the human neutrophil by calcium-mobilizing ligands. II. Correlation of calcium, diacyl glycerol, and phosphatidic acid generation with superoxide anion generation. J Biol Chem. 1988 Aug 15;263(23):11098–11105. [PubMed] [Google Scholar]
  36. Kroll M. H., Zavoico G. B., Schafer A. I. Second messenger function of phosphatidic acid in platelet activation. J Cell Physiol. 1989 Jun;139(3):558–564. doi: 10.1002/jcp.1041390315. [DOI] [PubMed] [Google Scholar]
  37. Lee M. H., Bell R. M. Phospholipid functional groups involved in protein kinase C activation, phorbol ester binding, and binding to mixed micelles. J Biol Chem. 1989 Sep 5;264(25):14797–14805. [PubMed] [Google Scholar]
  38. Leslie C. C., Channon J. Y. Anionic phospholipids stimulate an arachidonoyl-hydrolyzing phospholipase A2 from macrophages and reduce the calcium requirement for activity. Biochim Biophys Acta. 1990 Aug 6;1045(3):261–270. doi: 10.1016/0005-2760(90)90129-l. [DOI] [PubMed] [Google Scholar]
  39. Limatola C., Schaap D., Moolenaar W. H., van Blitterswijk W. J. Phosphatidic acid activation of protein kinase C-zeta overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J. 1994 Dec 15;304(Pt 3):1001–1008. doi: 10.1042/bj3041001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lin L. L., Lin A. Y., Knopf J. L. Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6147–6151. doi: 10.1073/pnas.89.13.6147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lin L. L., Wartmann M., Lin A. Y., Knopf J. L., Seth A., Davis R. J. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 1993 Jan 29;72(2):269–278. doi: 10.1016/0092-8674(93)90666-e. [DOI] [PubMed] [Google Scholar]
  42. Marshall L. A., Roshak A. Coexistence of two biochemically distinct phospholipase A2 activities in human platelet, monocyte, and neutrophil. Biochem Cell Biol. 1993 Jul-Aug;71(7-8):331–339. doi: 10.1139/o93-050. [DOI] [PubMed] [Google Scholar]
  43. McIntyre T. M., Reinhold S. L., Prescott S. M., Zimmerman G. A. Protein kinase C activity appears to be required for the synthesis of platelet-activating factor and leukotriene B4 by human neutrophils. J Biol Chem. 1987 Nov 15;262(32):15370–15376. [PubMed] [Google Scholar]
  44. Nemenoff R. A., Winitz S., Qian N. X., Van Putten V., Johnson G. L., Heasley L. E. Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C. J Biol Chem. 1993 Jan 25;268(3):1960–1964. [PubMed] [Google Scholar]
  45. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  46. Park J. W., Babior B. M. Effects of diacylglycerol on the activation and kinetics of the respiratory burst oxidase in a cell-free system from human neutrophils: evidence that diacylglycerol may regulate nucleotide uptake by a GTP-binding protein. Arch Biochem Biophys. 1993 Oct;306(1):119–124. doi: 10.1006/abbi.1993.1488. [DOI] [PubMed] [Google Scholar]
  47. Qiu Z. H., Leslie C. C. Protein kinase C-dependent and -independent pathways of mitogen-activated protein kinase activation in macrophages by stimuli that activate phospholipase A2. J Biol Chem. 1994 Jul 29;269(30):19480–19487. [PubMed] [Google Scholar]
  48. Rehfeldt W., Resch K., Goppelt-Struebe M. Cytosolic phospholipase A2 from human monocytic cells: characterization of substrate specificity and Ca(2+)-dependent membrane association. Biochem J. 1993 Jul 1;293(Pt 1):255–261. doi: 10.1042/bj2930255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Rosenthal M. D., Franson R. C. Separation of agonist-stimulated arachidonate mobilization from subsequent leukotriene B4 synthesis in human neutrophils: different effects of oleoylacetylglycerol and phorbol myristate acetate as priming agents. J Cell Physiol. 1994 Sep;160(3):522–530. doi: 10.1002/jcp.1041600315. [DOI] [PubMed] [Google Scholar]
  50. Rubin R., Rand M. L. Alcohol and platelet function. Alcohol Clin Exp Res. 1994 Feb;18(1):105–110. doi: 10.1111/j.1530-0277.1994.tb00888.x. [DOI] [PubMed] [Google Scholar]
  51. Sato T., Hashizume T., Fujii T. Preferential activation of phospholipase A2 by low concentrations of phosphatidic acid with long-chain fatty acids in rabbit platelets. J Biochem. 1992 Dec;112(6):756–761. doi: 10.1093/oxfordjournals.jbchem.a123971. [DOI] [PubMed] [Google Scholar]
  52. Stasek J. E., Jr, Natarajan V., Garcia J. G. Phosphatidic acid directly activates endothelial cell protein kinase C. Biochem Biophys Res Commun. 1993 Feb 26;191(1):134–141. doi: 10.1006/bbrc.1993.1194. [DOI] [PubMed] [Google Scholar]
  53. Stubbs C. D., Rubin R. Effect of ethanol on platelet phospholipase A2. Lipids. 1992 Apr;27(4):255–260. doi: 10.1007/BF02536471. [DOI] [PubMed] [Google Scholar]
  54. Thompson N. T., Garland L. G., Bonser R. W. Phospholipase D: regulation and functional significance. Adv Pharmacol. 1993;24:199–238. doi: 10.1016/s1054-3589(08)60938-2. [DOI] [PubMed] [Google Scholar]
  55. Tsai M. H., Yu C. L., Stacey D. W. A cytoplasmic protein inhibits the GTPase activity of H-Ras in a phospholipid-dependent manner. Science. 1990 Nov 16;250(4983):982–985. doi: 10.1126/science.2237442. [DOI] [PubMed] [Google Scholar]
  56. Tsai M. H., Yu C. L., Wei F. S., Stacey D. W. The effect of GTPase activating protein upon ras is inhibited by mitogenically responsive lipids. Science. 1989 Jan 27;243(4890):522–526. doi: 10.1126/science.2536192. [DOI] [PubMed] [Google Scholar]
  57. Valentine M. A., Bursten S. L., Harris W. E., Draves K. E., Pollok B. A., Ostrowski J., Bomsztyk K., Clark E. A. Generation of phosphatidic acid and diacylglycerols following ligation of surface immunoglobulin in human B lymphocytes: potential role in PKC activation. Cell Immunol. 1992 May;141(2):373–387. doi: 10.1016/0008-8749(92)90156-j. [DOI] [PubMed] [Google Scholar]
  58. Walsh C. E., Waite B. M., Thomas M. J., DeChatelet L. R. Release and metabolism of arachidonic acid in human neutrophils. J Biol Chem. 1981 Jul 25;256(14):7228–7234. [PubMed] [Google Scholar]
  59. Wijkander J., Sundler R. An 100-kDa arachidonate-mobilizing phospholipase A2 in mouse spleen and the macrophage cell line J774. Purification, substrate interaction and phosphorylation by protein kinase C. Eur J Biochem. 1991 Dec 18;202(3):873–880. doi: 10.1111/j.1432-1033.1991.tb16445.x. [DOI] [PubMed] [Google Scholar]
  60. Wijkander J., Sundler R. Macrophage arachidonate-mobilizing phospholipase A2: role of Ca2+ for membrane binding but not for catalytic activity. Biochem Biophys Res Commun. 1992 Apr 15;184(1):118–124. doi: 10.1016/0006-291x(92)91166-n. [DOI] [PubMed] [Google Scholar]
  61. Wirthmueller U., De Weck A. L., Dahinden C. A. Platelet-activating factor production in human neutrophils by sequential stimulation with granulocyte-macrophage colony-stimulating factor and the chemotactic factors C5A or formyl-methionyl-leucyl-phenylalanine. J Immunol. 1989 May 1;142(9):3213–3218. [PubMed] [Google Scholar]
  62. Worthen G. S., Avdi N., Buhl A. M., Suzuki N., Johnson G. L. FMLP activates Ras and Raf in human neutrophils. Potential role in activation of MAP kinase. J Clin Invest. 1994 Aug;94(2):815–823. doi: 10.1172/JCI117401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Xing M., Wilkins P. L., McConnell B. K., Mattera R. Regulation of phospholipase A2 activity in undifferentiated and neutrophil-like HL60 cells. Linkage between impaired responses to agonists and absence of protein kinase C-dependent phosphorylation of cytosolic phospholipase A2. J Biol Chem. 1994 Jan 28;269(4):3117–3124. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES