Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Mar 1;322(Pt 2):393–401. doi: 10.1042/bj3220393

Regulation of the rat cardiac troponin I gene by the transcription factor GATA-4.

A M Murphy 1, W R Thompson 1, L F Peng 1, L Jones 2nd 1
PMCID: PMC1218204  PMID: 9065755

Abstract

Troponin I is a thin-filament contractile protein expressed in striated muscle. There are three known troponin I genes which are expressed in a muscle-fibre-type-specific manner in mature animals. Although the slow skeletal troponin I isoform is expressed in fetal and neonatal heart, the cardiac isoform is restricted in its expression to the myocardium at all developmental stages. To study the regulation of this cardiac-specific and developmentally regulated gene in vitro, the rat cardiac troponin I gene was cloned. Transient transfection assays were performed with troponin I-luciferase fusion plasmids to characterize the regulatory regions of the gene. Proximal regions of the upstream sequence were sufficient to support high levels of expression of the reporter gene in cardiocytes and relatively low levels in other cell types. The highest luciferase activity in the cardiocytes was noted with a plasmid that included the region spanning -896 to +45 of the troponin I genomic sequence. Co-transfection of GATA-4, a recently identified cardiac transcription factor, with troponin I-luciferase constructs permitted high levels of luciferase expression in non-cardiac cells. Electrophoretic mobility-shift assays demonstrated specific binding of GATA-4 to oligonucleotides representative of multiple sites of the troponin I sequence. Mutation of a proximal GATA-4 DNA-binding site decreased transcriptional activation in transfected cardiocytes. These results indicate that the proximal cardiac troponin I sequence is sufficient to support high levels of cardiac-specific gene expression and that the GATA-4 transcription factor regulates troponin I-luciferase expression in vitro.

Full Text

The Full Text of this article is available as a PDF (699.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arceci R. J., King A. A., Simon M. C., Orkin S. H., Wilson D. B. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol. 1993 Apr;13(4):2235–2246. doi: 10.1128/mcb.13.4.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ausoni S., Campione M., Picard A., Moretti P., Vitadello M., De Nardi C., Schiaffino S. Structure and regulation of the mouse cardiac troponin I gene. J Biol Chem. 1994 Jan 7;269(1):339–346. [PubMed] [Google Scholar]
  3. Averyhart-Fullard V., Fraker L. D., Murphy A. M., Solaro R. J. Differential regulation of slow-skeletal and cardiac troponin I mRNA during development and by thyroid hormone in rat heart. J Mol Cell Cardiol. 1994 May;26(5):609–616. doi: 10.1006/jmcc.1994.1073. [DOI] [PubMed] [Google Scholar]
  4. Baldwin A. S., Jr, Kittler E. L., Emerson C. P., Jr Structure, evolution, and regulation of a fast skeletal muscle troponin I gene. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8080–8084. doi: 10.1073/pnas.82.23.8080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Banerjee-Basu S., Buonanno A. cis-acting sequences of the rat troponin I slow gene confer tissue- and development-specific transcription in cultured muscle cells as well as fiber type specificity in transgenic mice. Mol Cell Biol. 1993 Nov;13(11):7019–7028. doi: 10.1128/mcb.13.11.7019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chong P. C., Hodges R. S. Proximity of sulfhydryl groups to the sites of interaction between components of the troponin complex from rabbit skeletal muscle. J Biol Chem. 1982 Mar 10;257(5):2549–2555. [PubMed] [Google Scholar]
  8. Corin S. J., Juhasz O., Zhu L., Conley P., Kedes L., Wade R. Structure and expression of the human slow twitch skeletal muscle troponin I gene. J Biol Chem. 1994 Apr 8;269(14):10651–10659. [PubMed] [Google Scholar]
  9. Crossley M., Merika M., Orkin S. H. Self-association of the erythroid transcription factor GATA-1 mediated by its zinc finger domains. Mol Cell Biol. 1995 May;15(5):2448–2456. doi: 10.1128/mcb.15.5.2448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
  11. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans T., Reitman M., Felsenfeld G. An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5976–5980. doi: 10.1073/pnas.85.16.5976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Farrance I. K., Mar J. H., Ordahl C. P. M-CAT binding factor is related to the SV40 enhancer binding factor, TEF-1. J Biol Chem. 1992 Aug 25;267(24):17234–17240. [PubMed] [Google Scholar]
  14. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  15. Gao L., Kennedy J. M., Solaro R. J. Differential expression of TnI and TnT isoforms in rabbit heart during the perinatal period and during cardiovascular stress. J Mol Cell Cardiol. 1995 Jan;27(1):541–550. doi: 10.1016/s0022-2828(08)80049-1. [DOI] [PubMed] [Google Scholar]
  16. Gorza L., Ausoni S., Merciai N., Hastings K. E., Schiaffino S. Regional differences in troponin I isoform switching during rat heart development. Dev Biol. 1993 Mar;156(1):253–264. doi: 10.1006/dbio.1993.1074. [DOI] [PubMed] [Google Scholar]
  17. Gossett L. A., Kelvin D. J., Sternberg E. A., Olson E. N. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol. 1989 Nov;9(11):5022–5033. doi: 10.1128/mcb.9.11.5022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grépin C., Dagnino L., Robitaille L., Haberstroh L., Antakly T., Nemer M. A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription. Mol Cell Biol. 1994 May;14(5):3115–3129. doi: 10.1128/mcb.14.5.3115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Grépin C., Robitaille L., Antakly T., Nemer M. Inhibition of transcription factor GATA-4 expression blocks in vitro cardiac muscle differentiation. Mol Cell Biol. 1995 Aug;15(8):4095–4102. doi: 10.1128/mcb.15.8.4095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heikinheimo M., Scandrett J. M., Wilson D. B. Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev Biol. 1994 Aug;164(2):361–373. doi: 10.1006/dbio.1994.1206. [DOI] [PubMed] [Google Scholar]
  21. Hunkeler N. M., Kullman J., Murphy A. M. Troponin I isoform expression in human heart. Circ Res. 1991 Nov;69(5):1409–1414. doi: 10.1161/01.res.69.5.1409. [DOI] [PubMed] [Google Scholar]
  22. Iannello R. C., Mar J. H., Ordahl C. P. Characterization of a promoter element required for transcription in myocardial cells. J Biol Chem. 1991 Feb 15;266(5):3309–3316. [PubMed] [Google Scholar]
  23. Ip H. S., Wilson D. B., Heikinheimo M., Tang Z., Ting C. N., Simon M. C., Leiden J. M., Parmacek M. S. The GATA-4 transcription factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells. Mol Cell Biol. 1994 Nov;14(11):7517–7526. doi: 10.1128/mcb.14.11.7517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Koppe R. I., Hallauer P. L., Karpati G., Hastings K. E. cDNA clone and expression analysis of rodent fast and slow skeletal muscle troponin I mRNAs. J Biol Chem. 1989 Aug 25;264(24):14327–14333. [PubMed] [Google Scholar]
  25. Laverriere A. C., MacNeill C., Mueller C., Poelmann R. E., Burch J. B., Evans T. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem. 1994 Sep 16;269(37):23177–23184. [PubMed] [Google Scholar]
  26. Lee W., Mitchell P., Tjian R. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell. 1987 Jun 19;49(6):741–752. doi: 10.1016/0092-8674(87)90612-x. [DOI] [PubMed] [Google Scholar]
  27. Lehrer S. S. The regulatory switch of the muscle thin filament: Ca2+ or myosin heads? J Muscle Res Cell Motil. 1994 Jun;15(3):232–236. doi: 10.1007/BF00123476. [DOI] [PubMed] [Google Scholar]
  28. Lyons G. E., Schiaffino S., Sassoon D., Barton P., Buckingham M. Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol. 1990 Dec;111(6 Pt 1):2427–2436. doi: 10.1083/jcb.111.6.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mar J. H., Ordahl C. P. M-CAT binding factor, a novel trans-acting factor governing muscle-specific transcription. Mol Cell Biol. 1990 Aug;10(8):4271–4283. doi: 10.1128/mcb.10.8.4271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Martin A. F., Orlowski J. Molecular cloning and developmental expression of the rat cardiac-specific isoform of troponin I. J Mol Cell Cardiol. 1991 May;23(5):583–588. doi: 10.1016/0022-2828(91)90050-v. [DOI] [PubMed] [Google Scholar]
  31. Martin J. F., Schwarz J. J., Olson E. N. Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5282–5286. doi: 10.1073/pnas.90.11.5282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Merika M., Orkin S. H. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Krüppel family proteins Sp1 and EKLF. Mol Cell Biol. 1995 May;15(5):2437–2447. doi: 10.1128/mcb.15.5.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Minty A., Kedes L. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol Cell Biol. 1986 Jun;6(6):2125–2136. doi: 10.1128/mcb.6.6.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Molkentin J. D., Kalvakolanu D. V., Markham B. E. Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol. 1994 Jul;14(7):4947–4957. doi: 10.1128/mcb.14.7.4947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Murphy A. M., Jones L., 2nd, Sims H. F., Strauss A. W. Molecular cloning of rat cardiac troponin I and analysis of troponin I isoform expression in developing rat heart. Biochemistry. 1991 Jan 22;30(3):707–712. doi: 10.1021/bi00217a018. [DOI] [PubMed] [Google Scholar]
  36. Nikovits W., Jr, Kuncio G., Ordahl C. P. The chicken fast skeletal troponin I gene: exon organization and sequence. Nucleic Acids Res. 1986 Apr 25;14(8):3377–3390. doi: 10.1093/nar/14.8.3377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nikovits W., Jr, Mar J. H., Ordahl C. P. Muscle-specific activity of the skeletal troponin I promoter requires interaction between upstream regulatory sequences and elements contained within the first transcribed exon. Mol Cell Biol. 1990 Jul;10(7):3468–3482. doi: 10.1128/mcb.10.7.3468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Orkin S. H. Transcription factors and hematopoietic development. J Biol Chem. 1995 Mar 10;270(10):4955–4958. doi: 10.1074/jbc.270.10.4955. [DOI] [PubMed] [Google Scholar]
  39. Parmacek M. S., Vora A. J., Shen T., Barr E., Jung F., Leiden J. M. Identification and characterization of a cardiac-specific transcriptional regulatory element in the slow/cardiac troponin C gene. Mol Cell Biol. 1992 May;12(5):1967–1976. doi: 10.1128/mcb.12.5.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pierce J. C., Sternberg N., Sauer B. A mouse genomic library in the bacteriophage P1 cloning system: organization and characterization. Mamm Genome. 1992;3(10):550–558. doi: 10.1007/BF00350620. [DOI] [PubMed] [Google Scholar]
  41. Rosenthal N. Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol. 1987;152:704–720. doi: 10.1016/0076-6879(87)52075-4. [DOI] [PubMed] [Google Scholar]
  42. Sabry M. A., Dhoot G. K. Identification and pattern of expression of a developmental isoform of troponin I in chicken and rat cardiac muscle. J Muscle Res Cell Motil. 1989 Feb;10(1):85–91. doi: 10.1007/BF01739858. [DOI] [PubMed] [Google Scholar]
  43. Saggin L., Gorza L., Ausoni S., Schiaffino S. Troponin I switching in the developing heart. J Biol Chem. 1989 Sep 25;264(27):16299–16302. [PubMed] [Google Scholar]
  44. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Solaro R. J., Kumar P., Blanchard E. M., Martin A. F. Differential effects of pH on calcium activation of myofilaments of adult and perinatal dog hearts. Evidence for developmental differences in thin filament regulation. Circ Res. 1986 May;58(5):721–729. doi: 10.1161/01.res.58.5.721. [DOI] [PubMed] [Google Scholar]
  46. Soudais C., Bielinska M., Heikinheimo M., MacArthur C. A., Narita N., Saffitz J. E., Simon M. C., Leiden J. M., Wilson D. B. Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development. 1995 Nov;121(11):3877–3888. doi: 10.1242/dev.121.11.3877. [DOI] [PubMed] [Google Scholar]
  47. Stewart A. F., Larkin S. B., Farrance I. K., Mar J. H., Hall D. E., Ordahl C. P. Muscle-enriched TEF-1 isoforms bind M-CAT elements from muscle-specific promoters and differentially activate transcription. J Biol Chem. 1994 Feb 4;269(5):3147–3150. [PubMed] [Google Scholar]
  48. Swiderek K., Jaquet K., Meyer H. E., Heilmeyer L. M., Jr Cardiac troponin I, isolated from bovine heart, contains two adjacent phosphoserines. A first example of phosphoserine determination by derivatization to S-ethylcysteine. Eur J Biochem. 1988 Sep 15;176(2):335–342. doi: 10.1111/j.1432-1033.1988.tb14286.x. [DOI] [PubMed] [Google Scholar]
  49. Tamura S., Wang X. H., Maeda M., Futai M. Gastric DNA-binding proteins recognize upstream sequence motifs of parietal cell-specific genes. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10876–10880. doi: 10.1073/pnas.90.22.10876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Thompson W. R., Nadal-Ginard B., Mahdavi V. A MyoD1-independent muscle-specific enhancer controls the expression of the beta-myosin heavy chain gene in skeletal and cardiac muscle cells. J Biol Chem. 1991 Nov 25;266(33):22678–22688. [PubMed] [Google Scholar]
  51. Toyota N. Expression of troponin C genes during development in the chicken. Int J Dev Biol. 1993 Dec;37(4):531–537. [PubMed] [Google Scholar]
  52. Van Eyk J. E., Hodges R. S. The biological importance of each amino acid residue of the troponin I inhibitory sequence 104-115 in the interaction with troponin C and tropomyosin-actin. J Biol Chem. 1988 Feb 5;263(4):1726–1732. [PubMed] [Google Scholar]
  53. Weiss M. J., Keller G., Orkin S. H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 1994 May 15;8(10):1184–1197. doi: 10.1101/gad.8.10.1184. [DOI] [PubMed] [Google Scholar]
  54. Wilkinson J. M., Grand R. J. Comparison of amino acid sequence of troponin I from different striated muscles. Nature. 1978 Jan 5;271(5640):31–35. doi: 10.1038/271031a0. [DOI] [PubMed] [Google Scholar]
  55. Yu Y. T., Breitbart R. E., Smoot L. B., Lee Y., Mahdavi V., Nadal-Ginard B. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 1992 Sep;6(9):1783–1798. doi: 10.1101/gad.6.9.1783. [DOI] [PubMed] [Google Scholar]
  56. Yutzey K. E., Kline R. L., Konieczny S. F. An internal regulatory element controls troponin I gene expression. Mol Cell Biol. 1989 Apr;9(4):1397–1405. doi: 10.1128/mcb.9.4.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zhu H., Garcia A. V., Ross R. S., Evans S. M., Chien K. R. A conserved 28-base-pair element (HF-1) in the rat cardiac myosin light-chain-2 gene confers cardiac-specific and alpha-adrenergic-inducible expression in cultured neonatal rat myocardial cells. Mol Cell Biol. 1991 Apr;11(4):2273–2281. doi: 10.1128/mcb.11.4.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zot A. S., Potter J. D. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys Biophys Chem. 1987;16:535–559. doi: 10.1146/annurev.bb.16.060187.002535. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES