Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Mar 1;322(Pt 2):435–440. doi: 10.1042/bj3220435

Effect of membrane environment on the activity and inhibitability by malonyl-CoA of the carnitine acyltransferase of hepatic microsomal membranes.

N M Broadway 1, E D Saggerson 1
PMCID: PMC1218209  PMID: 9065760

Abstract

We have investigated the extent to which membrane environment affects the catalytic properties of the malonyl-CoA-sensitive carnitine acyltransferase of liver microsomal membranes. Arrhenius-type plots of activity were linear in the absence and presence of malonyl-CoA (2.5 microM). Sensitivity to malonyl-CoA increased with decreasing assay temperature. Partly purified enzyme displayed an increased K0.5 (substrate concentration supporting half the maximal reaction rate) for myristoyl-CoA and a reduced sensitivity to malonyl-CoA compared with the enzyme in situ in membranes. Reconstitution with liposomes of a range of compositions restored the K0.5 for myristoyl-CoA to values similar to that seen in native membranes. The lipid requirements for restoration of sensitivity to malonyl-CoA were more stringent. When animals were starved for 24 h the specific activity of carnitine acyltransferase in microsomal membrane residues was increased 3.3-fold, whereas sensitivity to malonyl-CoA was decreased to 1/2.8. When enzymes partly purified from fed and starved animals were reconstituted into crude soybean phosphatidylcholine liposomes there was no difference in sensitivity to malonyl-CoA. When partly purified enzyme from fed rats was reconstituted into liposomes prepared from microsomal membrane lipids from fed animals it was 2.2-fold more sensitive to malonyl-CoA than when reconstituted with liposomes prepared from microsomal membrane lipids from starved animals. This suggests that the physiological changes in sensitivity to malonyl-CoA are mediated via changes in membrane lipid composition rather than via modification of the enzyme protein itself. The increased specific actvity of acyltransferase observed on starvation could not be attributed to changes in membrane lipid composition.

Full Text

The Full Text of this article is available as a PDF (362.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bach D., Bursuker I., Goldman R. Differential scanning calorimetry and enzymic activity of rat liver microsomes in the presence and absence of delta1-tetrahydrocannabinol. Biochim Biophys Acta. 1977 Sep 5;469(2):171–179. doi: 10.1016/0005-2736(77)90179-1. [DOI] [PubMed] [Google Scholar]
  3. Bhuiyan A. K., Murthy M. S., Pande S. V. Some properties of the malonyl-CoA sensitive carnitine long/medium chain acyltransferase activities of peroxisomes and microsomes of rat liver. Biochem Mol Biol Int. 1994 Oct;34(3):493–503. [PubMed] [Google Scholar]
  4. Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
  5. Brady L. J., Silverstein L. J., Hoppel C. L., Brady P. S. Hepatic mitochondrial inner membrane properties and carnitine palmitoyltransferase A and B. Effect of diabetes and starvation. Biochem J. 1985 Dec 1;232(2):445–450. doi: 10.1042/bj2320445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brady P. S., Ramsay R. R., Brady L. J. Regulation of the long-chain carnitine acyltransferases. FASEB J. 1993 Aug;7(11):1039–1044. doi: 10.1096/fasebj.7.11.8370473. [DOI] [PubMed] [Google Scholar]
  7. Broadway N. M., Saggerson E. D. Inhibition of liver microsomal carnitine acyltransferases by sulphonylurea drugs. FEBS Lett. 1995 Sep 4;371(2):137–139. doi: 10.1016/0014-5793(95)00877-c. [DOI] [PubMed] [Google Scholar]
  8. Broadway N. M., Saggerson E. D. Microsomal carnitine acyltransferases. Biochem Soc Trans. 1995 Aug;23(3):490–494. doi: 10.1042/bst0230490. [DOI] [PubMed] [Google Scholar]
  9. Broadway N. M., Saggerson E. D. Solubilization and separation of two distinct carnitine acyltransferases from hepatic microsomes: characterization of the malonyl-CoA-sensitive enzyme. Biochem J. 1995 Sep 15;310(Pt 3):989–995. doi: 10.1042/bj3100989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cook G. A. Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values. J Biol Chem. 1984 Oct 10;259(19):12030–12033. [PubMed] [Google Scholar]
  11. Cook G. A., Stephens T. W., Harris R. A. Altered sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA in ketotic diabetic rats. Biochem J. 1984 Apr 1;219(1):337–339. doi: 10.1042/bj2190337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cook G. A., Weakley L. J. Effects of starvation on the carnitine palmitoyltransferase of hepatic peroxisomes. Biochem Soc Trans. 1990 Oct;18(5):988–988. doi: 10.1042/bst0180988. [DOI] [PubMed] [Google Scholar]
  13. Declercq P. E., Falck J. R., Kuwajima M., Tyminski H., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987 Jul 15;262(20):9812–9821. [PubMed] [Google Scholar]
  14. Ghadiminejad I., Saggerson D. Cholate separates the catalytic and malonyl-CoA-binding components of carnitine palmitoyltransferase from liver outer mitochondrial membranes. Biochim Biophys Acta. 1991 May 8;1083(2):166–172. doi: 10.1016/0005-2760(91)90038-j. [DOI] [PubMed] [Google Scholar]
  15. Ghadiminejad I., Saggerson D. Physiological state and the sensitivity of liver mitochondrial outer membrane carnitine palmitoyltransferase to malonyl-CoA. Correlations with assay temperature, salt concentration and membrane lipid composition. Int J Biochem. 1992 Jul;24(7):1117–1124. doi: 10.1016/0020-711x(92)90382-b. [DOI] [PubMed] [Google Scholar]
  16. Ghadiminejad I., Saggerson D. Use of mitochondrial inner membrane proteins and phospholipids to facilitate disengagement of the catalytic and malonyl-CoA binding components of carnitine palmitoyltransferase from liver mitochondrial outer membranes. Int J Biochem. 1992 Apr;24(4):573–577. doi: 10.1016/0020-711x(92)90329-y. [DOI] [PubMed] [Google Scholar]
  17. Gordon L. M., Sauerheber R. D., Esgate J. A., Dipple I., Marchmont R. J., Houslay M. D. The increase in bilayer fluidity of rat liver plasma membranes achieved by the local anesthetic benzyl alcohol affects the activity of intrinsic membrane enzymes. J Biol Chem. 1980 May 25;255(10):4519–4527. [PubMed] [Google Scholar]
  18. Kashfi K., Cook G. A. Temperature effects on malonyl-CoA inhibition of carnitine palmitoyltransferase I. Biochim Biophys Acta. 1995 Jul 13;1257(2):133–139. doi: 10.1016/0005-2760(95)00063-i. [DOI] [PubMed] [Google Scholar]
  19. Kolodziej M. P., Crilly P. J., Corstorphine C. G., Zammit V. A. Development and characterization of a polyclonal antibody against rat liver mitochondrial overt carnitine palmitoyltransferase (CPT I). Distinction of CPT I from CPT II and of isoforms of CPT I in different tissues. Biochem J. 1992 Mar 1;282(Pt 2):415–421. doi: 10.1042/bj2820415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kolodziej M. P., Zammit V. A. Sensitivity of inhibition of rat liver mitochondrial outer-membrane carnitine palmitoyltransferase by malonyl-CoA to chemical- and temperature-induced changes in membrane fluidity. Biochem J. 1990 Dec 1;272(2):421–425. doi: 10.1042/bj2720421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lakshmi V., Monder C. Evidence for independent 11-oxidase and 11-reductase activities of 11 beta-hydroxysteroid dehydrogenase: enzyme latency, phase transitions, and lipid requirements. Endocrinology. 1985 Feb;116(2):552–560. doi: 10.1210/endo-116-2-552. [DOI] [PubMed] [Google Scholar]
  22. Murthy M. S., Pande S. V. Characterization of a solubilized malonyl-CoA-sensitive carnitine palmitoyltransferase from the mitochondrial outer membrane as a protein distinct from the malonyl-CoA-insensitive carnitine palmitoyltransferase of the inner membrane. Biochem J. 1990 Jun 15;268(3):599–604. doi: 10.1042/bj2680599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Murthy M. S., Pande S. V. Malonyl-CoA-sensitive and -insensitive carnitine palmitoyltransferase activities of microsomes are due to different proteins. J Biol Chem. 1994 Jul 15;269(28):18283–18286. [PubMed] [Google Scholar]
  24. Murthy M. S., Pande S. V. Some differences in the properties of carnitine palmitoyltransferase activities of the mitochondrial outer and inner membranes. Biochem J. 1987 Dec 15;248(3):727–733. doi: 10.1042/bj2480727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mynatt R. L., Greenhaw J. J., Cook G. A. Cholate extracts of mitochondrial outer membranes increase inhibition by malonyl-CoA of carnitine palmitoyltransferase-I by a mechanism involving phospholipids. Biochem J. 1994 May 1;299(Pt 3):761–767. doi: 10.1042/bj2990761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Park E. A., Mynatt R. L., Cook G. A., Kashfi K. Insulin regulates enzyme activity, malonyl-CoA sensitivity and mRNA abundance of hepatic carnitine palmitoyltransferase-I. Biochem J. 1995 Sep 15;310(Pt 3):853–858. doi: 10.1042/bj3100853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Quant P. A., Makins R. A. Metabolic control analysis of hepatic beta-oxidation: the top-down approach. Biochem Soc Trans. 1994 May;22(2):441–446. doi: 10.1042/bst0220441. [DOI] [PubMed] [Google Scholar]
  28. Ramsay R. R., Arduini A. The carnitine acyltransferases and their role in modulating acyl-CoA pools. Arch Biochem Biophys. 1993 May;302(2):307–314. doi: 10.1006/abbi.1993.1216. [DOI] [PubMed] [Google Scholar]
  29. Richards E. W., Hamm M. W., Fletcher J. E., Otto D. A. The binding of palmitoyl-CoA to bovine serum albumin. Biochim Biophys Acta. 1990 Jun 14;1044(3):361–367. doi: 10.1016/0005-2760(90)90081-8. [DOI] [PubMed] [Google Scholar]
  30. Robinson I. N., Zammit V. A. Sensitivity of carnitine acyltransferase I to malonly-CoA inhibition in isolated rat liver mitochondria is quantitatively related to hepatic malonyl-CoA concentration in vivo. Biochem J. 1982 Jul 15;206(1):177–179. doi: 10.1042/bj2060177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saggerson E. D., Carpenter C. A. Effects of fasting and malonyl CoA on the kinetics of carnitine palmitoyltransferase and carnitine octanoyltransferase in intact rat liver mitochondria. FEBS Lett. 1981 Sep 28;132(2):166–168. doi: 10.1016/0014-5793(81)81152-0. [DOI] [PubMed] [Google Scholar]
  32. Saggerson E. D., Carpenter C. A. Effects of fasting, adrenalectomy and streptozotocin-diabetes on sensitivity of hepatic carnitine acyltransferase to malonyl CoA. FEBS Lett. 1981 Jul 6;129(2):225–228. doi: 10.1016/0014-5793(81)80170-6. [DOI] [PubMed] [Google Scholar]
  33. Shepherd J. C., Schumacher T. N., Ashton-Rickardt P. G., Imaeda S., Ploegh H. L., Janeway C. A., Jr, Tonegawa S. TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective. Cell. 1993 Aug 13;74(3):577–584. doi: 10.1016/0092-8674(93)80058-m. [DOI] [PubMed] [Google Scholar]
  34. Venkatesan S., Mitropoulos K. A. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase. The difference in the mechanism of the in vitro modulation by phosphorylation and dephosphorylation to modulation of enzyme activity by non-esterified cholesterol. Biochim Biophys Acta. 1982 Mar 12;710(3):446–455. doi: 10.1016/0005-2760(82)90128-x. [DOI] [PubMed] [Google Scholar]
  35. Woeltje K. F., Kuwajima M., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. II. Use of detergents and antibodies. J Biol Chem. 1987 Jul 15;262(20):9822–9827. [PubMed] [Google Scholar]
  36. Zammit V. A., Corstorphine C. G., Gray S. R. Changes in the ability of malonyl-CoA to inhibit carnitine palmitoyltransferase I activity and to bind to rat liver mitochondria during incubation in vitro. Differences in binding at 0 degree C and 37 degrees C with a fixed concentration of malonyl-CoA. Biochem J. 1984 Sep 1;222(2):335–342. doi: 10.1042/bj2220335. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES