Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Mar 1;322(Pt 2):477–481. doi: 10.1042/bj3220477

Induction of nitric oxide synthesis in J774 cells lowers intracellular glutathione: effect of modulated glutathione redox status on nitric oxide synthase induction.

J S Hothersall 1, F Q Cunha 1, G H Neild 1, A A Norohna-Dutra 1
PMCID: PMC1218215  PMID: 9065766

Abstract

Under pathological conditions, the induction of nitric oxide synthase (NOS) in macrophages is responsible for NO production to a cytotoxic concentration. We have investigated changes to, and the role of, intracellular glutathione in NO production by the activated murine macrophage cell line J774. Total glutathione concentrations (reduced, GSH, plus the disulphide, GSSG) were decreased to 45% of the control 48 h after cells were activated with bacterial lipopolysaccharide plus interferon gamma. This was accompanied by a decrease in the GSH/GSSG ratio from 12:1 to 2:1. The intracellular decrease was not accounted for by either GSH or GSSG efflux; on the contrary, rapid export of glutathione in control cells was abrogated during activation. The loss of intra- and extracellular glutathione indicates either a decrease in synthesis de novo, or an increase in utilization, rather than competition for available NADPH. All changes in activated cells were prevented by pretreatment with the NOS inhibitor L-N-(1-iminoethyl)ornithine. Basal glutathione levels in J774 cells were manipulated by pretreatment with (1) buthionine sulphoximine (glutathione synthase inhibitor), (2) acivicin (gamma-glutamyltranspeptidase inhibitor), (3) bromo-octane (glutathione S-transferase substrate) and (4) diamide/zinc (thiol oxidant and glutathione reductase inhibitor). All treatments significantly decreased the output of NO following activation. The degree of inhibition was dependent on (i) duration of treatment prior to activation, (ii) rate of depletion or subsequent recovery and (iii) thiol end product. The level of GSH did not significantly affect the production of NO, after induction of NOS. Thus, glutathione redox status appears to plays an important role in NOS induction during macrophage activation.

Full Text

The Full Text of this article is available as a PDF (263.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe M., Hugli T. E. Characterization of leukotriene C4 synthetase in mouse peritoneal exudate cells. Biochim Biophys Acta. 1988 Apr 15;959(3):386–398. doi: 10.1016/0005-2760(88)90213-5. [DOI] [PubMed] [Google Scholar]
  2. Abe M., Hugli T. E. Characterization of leukotriene C4 synthetase in mouse peritoneal exudate cells. Biochim Biophys Acta. 1988 Apr 15;959(3):386–398. doi: 10.1016/0005-2760(88)90213-5. [DOI] [PubMed] [Google Scholar]
  3. Asahi M., Fujii J., Suzuki K., Seo H. G., Kuzuya T., Hori M., Tada M., Fujii S., Taniguchi N. Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity. J Biol Chem. 1995 Sep 8;270(36):21035–21039. doi: 10.1074/jbc.270.36.21035. [DOI] [PubMed] [Google Scholar]
  4. Assreuy J., Cunha F. Q., Epperlein M., Noronha-Dutra A., O'Donnell C. A., Liew F. Y., Moncada S. Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major. Eur J Immunol. 1994 Mar;24(3):672–676. doi: 10.1002/eji.1830240328. [DOI] [PubMed] [Google Scholar]
  5. Bauvois B., Laouar A., Rouillard D., Wietzerbin J. Inhibition of gamma-glutamyl transpeptidase activity at the surface of human myeloid cells is correlated with macrophage maturation and transforming growth factor beta production. Cell Growth Differ. 1995 Sep;6(9):1163–1170. [PubMed] [Google Scholar]
  6. Brown G. C., Cooper C. E. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994 Dec 19;356(2-3):295–298. doi: 10.1016/0014-5793(94)01290-3. [DOI] [PubMed] [Google Scholar]
  7. Buchmüller-Rouiller Y., Corradin S. B., Mauël J. Macrophage activation for intracellular killing as induced by a Ca2+ ionophore. Dependence on L-arginine-derived nitrogen oxidation products. Biochem J. 1992 Jun 1;284(Pt 2):387–392. doi: 10.1042/bj2840387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chari S. N., Nath N., Rathi A. B. Glutathione and its redox system in diabetic polymorphonuclear leukocytes. Am J Med Sci. 1984 May-Jun;287(3):14–15. doi: 10.1097/00000441-198405000-00004. [DOI] [PubMed] [Google Scholar]
  9. Clancy R. M., Levartovsky D., Leszczynska-Piziak J., Yegudin J., Abramson S. B. Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3680–3684. doi: 10.1073/pnas.91.9.3680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cunha F. Q., Assreuy J., Xu D., Charles I., Liew F. Y., Moncada S. Repeated induction of nitric oxide synthase and leishmanicidal activity in murine macrophages. Eur J Immunol. 1993 Jun;23(6):1385–1388. doi: 10.1002/eji.1830230631. [DOI] [PubMed] [Google Scholar]
  11. De Groote M. A., Granger D., Xu Y., Campbell G., Prince R., Fang F. C. Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6399–6403. doi: 10.1073/pnas.92.14.6399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dröge W., Eck H. P., Gmünder H., Mihm S. Requirement for prooxidant and antioxidant states in T cell mediated immune responses.--Relevance for the pathogenetic mechanisms of AIDS? Klin Wochenschr. 1991 Dec 15;69(21-23):1118–1122. doi: 10.1007/BF01645171. [DOI] [PubMed] [Google Scholar]
  13. Duval D. L., Sieg D. J., Billings R. E. Regulation of hepatic nitric oxide synthase by reactive oxygen intermediates and glutathione. Arch Biochem Biophys. 1995 Feb 1;316(2):699–706. doi: 10.1006/abbi.1995.1093. [DOI] [PubMed] [Google Scholar]
  14. Eggleston L. V., Krebs H. A. Regulation of the pentose phosphate cycle. Biochem J. 1974 Mar;138(3):425–435. doi: 10.1042/bj1380425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Farrell P. J., Hunt T., Jackson R. J. Analysis of phosphorylation of protein synthesis initiation factor eIF-2 by two-dimensional gel electrophoresis. Eur J Biochem. 1978 Sep 1;89(2):517–521. doi: 10.1111/j.1432-1033.1978.tb12556.x. [DOI] [PubMed] [Google Scholar]
  16. Green S. J., Meltzer M. S., Hibbs J. B., Jr, Nacy C. A. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism. J Immunol. 1990 Jan 1;144(1):278–283. [PubMed] [Google Scholar]
  17. Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
  18. Hothersall J. S., Taylaur C. E., McLean P. Antioxidant status in an in vitro model for hyperglycemic lens cataract formation: effect of aldose reductase inhibitor statil. Biochem Med Metab Biol. 1988 Oct;40(2):109–117. doi: 10.1016/0885-4505(88)90111-9. [DOI] [PubMed] [Google Scholar]
  19. Huang C. S., Moore W. R., Meister A. On the active site thiol of gamma-glutamylcysteine synthetase: relationships to catalysis, inhibition, and regulation. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2464–2468. doi: 10.1073/pnas.85.8.2464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ignarro L. J., Lippton H., Edwards J. C., Baricos W. H., Hyman A. L., Kadowitz P. J., Gruetter C. A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther. 1981 Sep;218(3):739–749. [PubMed] [Google Scholar]
  21. Ishii T., Nakayama K., Sato H., Miura K., Yamada M., Yamada K., Sugita Y., Bannai S. Expression of the mouse macrophage cystine transporter in Xenopus laevis oocytes. Arch Biochem Biophys. 1991 Aug 15;289(1):71–75. doi: 10.1016/0003-9861(91)90443-m. [DOI] [PubMed] [Google Scholar]
  22. Knowles R. G., Palacios M., Palmer R. M., Moncada S. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5159–5162. doi: 10.1073/pnas.86.13.5159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kwon N. S., Stuehr D. J., Nathan C. F. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med. 1991 Oct 1;174(4):761–767. doi: 10.1084/jem.174.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Laskin D. L., Heck D. E., Gardner C. R., Feder L. S., Laskin J. D. Distinct patterns of nitric oxide production in hepatic macrophages and endothelial cells following acute exposure of rats to endotoxin. J Leukoc Biol. 1994 Dec;56(6):751–758. doi: 10.1002/jlb.56.6.751. [DOI] [PubMed] [Google Scholar]
  25. Liew F. Y., Millott S., Parkinson C., Palmer R. M., Moncada S. Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J Immunol. 1990 Jun 15;144(12):4794–4797. [PubMed] [Google Scholar]
  26. Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
  27. Meister A. Mitochondrial changes associated with glutathione deficiency. Biochim Biophys Acta. 1995 May 24;1271(1):35–42. doi: 10.1016/0925-4439(95)00007-q. [DOI] [PubMed] [Google Scholar]
  28. Molina y Vedia L., McDonald B., Reep B., Brüne B., Di Silvio M., Billiar T. R., Lapetina E. G. Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem. 1992 Dec 15;267(35):24929–24932. [PubMed] [Google Scholar]
  29. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  30. Pan M., Malandro M., Stevens B. R. Regulation of system y+ arginine transport capacity in differentiating human intestinal Caco-2 cells. Am J Physiol. 1995 Apr;268(4 Pt 1):G578–G585. doi: 10.1152/ajpgi.1995.268.4.G578. [DOI] [PubMed] [Google Scholar]
  31. Persechini A., McMillan K., Masters B. S. Inhibition of nitric oxide synthase activity by Zn2+ ion. Biochemistry. 1995 Nov 21;34(46):15091–15095. doi: 10.1021/bi00046a015. [DOI] [PubMed] [Google Scholar]
  32. Roberts R. L., Aroda V. R., Ank B. J. N-acetylcysteine enhances antibody-dependent cellular cytotoxicity in neutrophils and mononuclear cells from healthy adults and human immunodeficiency virus-infected patients. J Infect Dis. 1995 Dec;172(6):1492–1502. doi: 10.1093/infdis/172.6.1492. [DOI] [PubMed] [Google Scholar]
  33. Rouzer C. A., Scott W. A., Griffith O. W., Hamill A. L., Cohn Z. A. Depletion of glutathione selectively inhibits synthesis of leukotriene C by macrophages. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2532–2536. doi: 10.1073/pnas.78.4.2532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rouzer C. A., Scott W. A., Griffith O. W., Hamill A. L., Cohn Z. A. Glutathione metabolism in resting and phagocytizing peritoneal macrophages. J Biol Chem. 1982 Feb 25;257(4):2002–2008. [PubMed] [Google Scholar]
  35. Rzymowska J. Activities of enzyme transducing extracellular signals--gamma glutamyltransferase and enzymes metabolizing glutathione in acute lymphoblastic and myeloid human leukemias. Neoplasma. 1995;42(2):53–56. [PubMed] [Google Scholar]
  36. Stuehr D. J., Kwon N. S., Nathan C. F. FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem Biophys Res Commun. 1990 Apr 30;168(2):558–565. doi: 10.1016/0006-291x(90)92357-6. [DOI] [PubMed] [Google Scholar]
  37. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  38. Tsukahara T., Kominami E., Katunuma N. Formation of mixed disulfide of cystatin-beta in cultured macrophages treated with various oxidants. J Biochem. 1987 Jun;101(6):1447–1456. doi: 10.1093/oxfordjournals.jbchem.a122014. [DOI] [PubMed] [Google Scholar]
  39. Weber G., Prajda N., Lui M. S., Denton J. E., Aoki T., Sebolt J., Zhen Y. S., Burt M. E., Faderan M. A., Reardon M. A. Multi-enzyme-targeted chemotherapy by acivicin and actinomycin. Adv Enzyme Regul. 1982;20:75–96. doi: 10.1016/0065-2571(82)90009-7. [DOI] [PubMed] [Google Scholar]
  40. Wink D. A., Nims R. W., Darbyshire J. F., Christodoulou D., Hanbauer I., Cox G. W., Laval F., Laval J., Cook J. A., Krishna M. C. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol. 1994 Jul-Aug;7(4):519–525. doi: 10.1021/tx00040a007. [DOI] [PubMed] [Google Scholar]
  41. Zhu L., Gunn C., Beckman J. S. Bactericidal activity of peroxynitrite. Arch Biochem Biophys. 1992 Nov 1;298(2):452–457. doi: 10.1016/0003-9861(92)90434-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES