Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Mar 1;322(Pt 2):499–506. doi: 10.1042/bj3220499

Structural differences and the presence of unsubstituted amino groups in heparan sulphates from different tissues and species.

T Toida 1, H Yoshida 1, H Toyoda 1, I Koshiishi 1, T Imanari 1, R E Hileman 1, J R Fromm 1, R J Linhardt 1
PMCID: PMC1218218  PMID: 9065769

Abstract

This study presents a comparison of heparan sulphate chains isolated from various porcine and bovine tissues. 1H-NMR spectroscopy (500 MHz) was applied for structural and compositional studies on intact heparan sulphate chains. After enzymic digestion of heparan sulphate using heparin lyase I (EC 4.2.2.7) II and III (EC 4.2.2.8), the compositions of unsaturated disaccharides obtained were determined by analytical capillary electrophoresis. Correlations between the N-sulphated glucosamine residues and O-sulphation and between iduronic acid content and total sulphation were discovered using the data obtained by NMR and disaccharide analysis. Heparan sulphate chains could be classified into two groups based on the sulphation degree and the iduronic acid content. Heparan sulphate chains with a high degree of sulphation possessed also a significant number of iduronic acid residues and were isolated exclusively from porcine brain, liver and kidney medulla. The presence and amount of N-unsubstituted glucosamine residues (GlcNp) was established in all of the heparan sulphates examined. The structural context in which this residue occurs was demonstrated to be: high sulphation domain --> 4)-beta-D-GlcAp-(1 --> 4)-alpha-D-GlcNp-(1 --> 4)-beta-D-GlcAp-(1 --> low sulphation domain (where GlcNp is 2-amino-2-deoxyglucopyranose, and GlcAp is glucopyranosyluronic acid), based on the isolation and characterization of a novel, heparin lyase III-derived, GlcNp containing tetrasaccharide and hexasaccharide. The results presented suggest that structural differences may play a role in important biological events controlled by heparan sulphate in different tissues.

Full Text

The Full Text of this article is available as a PDF (551.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bianchini P., Osima B., Parma B., Nader H. B., Dietrich C. P., Casu B., Torri G. Fractionation and structural features of two heparin families with high antithrombotic, antilipemic and anticoagulant activities. Arzneimittelforschung. 1985;35(8):1215–1219. [PubMed] [Google Scholar]
  2. Bienkowski M. J., Conrad H. E. Structural characterization of the oligosaccharides formed by depolymerization of heparin with nitrous acid. J Biol Chem. 1985 Jan 10;260(1):356–365. [PubMed] [Google Scholar]
  3. Desai U. R., Wang H. M., Linhardt R. J. Specificity studies on the heparin lyases from Flavobacterium heparinum. Biochemistry. 1993 Aug 17;32(32):8140–8145. doi: 10.1021/bi00083a012. [DOI] [PubMed] [Google Scholar]
  4. Desai U. R., Wang H. M., Linhardt R. J. Substrate specificity of the heparin lyases from Flavobacterium heparinum. Arch Biochem Biophys. 1993 Nov 1;306(2):461–468. doi: 10.1006/abbi.1993.1538. [DOI] [PubMed] [Google Scholar]
  5. Furukawa K., Terayama H. Isolation and identification of glycosaminoglycans associated with purified nuclei from rat liver. Biochim Biophys Acta. 1977 Sep 29;499(2):278–289. doi: 10.1016/0304-4165(77)90010-1. [DOI] [PubMed] [Google Scholar]
  6. Gallagher J. T., Lyon M., Steward W. P. Structure and function of heparan sulphate proteoglycans. Biochem J. 1986 Jun 1;236(2):313–325. doi: 10.1042/bj2360313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gallagher J. T. Sulphated polysaccharide structures. Nature. 1987 Mar 12;326(6109):136–136. doi: 10.1038/326136a0. [DOI] [PubMed] [Google Scholar]
  8. Gallagher J. T., Turnbull J. E., Lyon M. Patterns of sulphation in heparan sulphate: polymorphism based on a common structural theme. Int J Biochem. 1992 Apr;24(4):553–560. doi: 10.1016/0020-711x(92)90326-v. [DOI] [PubMed] [Google Scholar]
  9. Gallagher J. T., Walker A. Molecular distinctions between heparan sulphate and heparin. Analysis of sulphation patterns indicates that heparan sulphate and heparin are separate families of N-sulphated polysaccharides. Biochem J. 1985 Sep 15;230(3):665–674. doi: 10.1042/bj2300665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gettins P., Choay J. Examination, by 1H-n.m.r. spectroscopy, of the binding of a synthetic, high-affinity heparin pentasaccharide to human antithrombin III. Carbohydr Res. 1989 Jan 15;185(1):69–76. doi: 10.1016/0008-6215(89)84022-4. [DOI] [PubMed] [Google Scholar]
  11. Griffin C. C., Linhardt R. J., Van Gorp C. L., Toida T., Hileman R. E., Schubert R. L., 2nd, Brown S. E. Isolation and characterization of heparan sulfate from crude porcine intestinal mucosal peptidoglycan heparin. Carbohydr Res. 1995 Oct 16;276(1):183–197. doi: 10.1016/0008-6215(95)00166-q. [DOI] [PubMed] [Google Scholar]
  12. Grossman B. J., Cifonelli J. A., Ozoa A. K. Inhibition of atherosclerosis in cholesterol-fed rabbits by a heparitin sulfate. Preliminary communication. Atherosclerosis. 1971 Jan-Feb;13(1):103–109. doi: 10.1016/0021-9150(71)90011-6. [DOI] [PubMed] [Google Scholar]
  13. Horner A. A. Rat heparan sulphates. A study of the antithrombin-binding properties of heparan sulphate chains from rat adipose tissue, brain, carcase, heart, intestine, kidneys, liver, lungs, skin and spleen. Biochem J. 1990 Mar 1;266(2):553–559. [PMC free article] [PubMed] [Google Scholar]
  14. Jandik K. A., Kruep D., Cartier M., Linhardt R. J. Accelerated stability studies of heparin. J Pharm Sci. 1996 Jan;85(1):45–51. doi: 10.1021/js9502736. [DOI] [PubMed] [Google Scholar]
  15. Lindahl U., Lidholt K., Spillmann D., Kjellén L. More to "heparin" than anticoagulation. Thromb Res. 1994 Jul 1;75(1):1–32. doi: 10.1016/0049-3848(94)90136-8. [DOI] [PubMed] [Google Scholar]
  16. Lindahl U., Lidholt K., Spillmann D., Kjellén L. More to "heparin" than anticoagulation. Thromb Res. 1994 Jul 1;75(1):1–32. doi: 10.1016/0049-3848(94)90136-8. [DOI] [PubMed] [Google Scholar]
  17. Linhardt R. J., Ampofo S. A., Fareed J., Hoppensteadt D., Mulliken J. B., Folkman J. Isolation and characterization of human heparin. Biochemistry. 1992 Dec 15;31(49):12441–12445. doi: 10.1021/bi00164a020. [DOI] [PubMed] [Google Scholar]
  18. Linhardt R. J., Turnbull J. E., Wang H. M., Loganathan D., Gallagher J. T. Examination of the substrate specificity of heparin and heparan sulfate lyases. Biochemistry. 1990 Mar 13;29(10):2611–2617. doi: 10.1021/bi00462a026. [DOI] [PubMed] [Google Scholar]
  19. Linker A., Hovingh P. The heparitin sulfates (heparan sulfates). Carbohydr Res. 1973 Jul;29(1):41–62. doi: 10.1016/s0008-6215(00)82069-8. [DOI] [PubMed] [Google Scholar]
  20. Lohse D. L., Linhardt R. J. Purification and characterization of heparin lyases from Flavobacterium heparinum. J Biol Chem. 1992 Dec 5;267(34):24347–24355. [PubMed] [Google Scholar]
  21. Lyon M., Deakin J. A., Gallagher J. T. Liver heparan sulfate structure. A novel molecular design. J Biol Chem. 1994 Apr 15;269(15):11208–11215. [PubMed] [Google Scholar]
  22. Marcum J. A., Rosenberg R. D. Anticoagulantly active heparin-like molecules from vascular tissue. Biochemistry. 1984 Apr 10;23(8):1730–1737. doi: 10.1021/bi00303a023. [DOI] [PubMed] [Google Scholar]
  23. McKeehan W. L., Kan M. Heparan sulfate fibroblast growth factor receptor complex: structure-function relationships. Mol Reprod Dev. 1994 Sep;39(1):69–82. doi: 10.1002/mrd.1080390112. [DOI] [PubMed] [Google Scholar]
  24. Nakajima M., Irimura T., Di Ferrante D., Di Ferrante N., Nicolson G. L. Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science. 1983 May 6;220(4597):611–613. doi: 10.1126/science.6220468. [DOI] [PubMed] [Google Scholar]
  25. Nelson R. M., Venot A., Bevilacqua M. P., Linhardt R. J., Stamenkovic I. Carbohydrate-protein interactions in vascular biology. Annu Rev Cell Dev Biol. 1995;11:601–631. doi: 10.1146/annurev.cb.11.110195.003125. [DOI] [PubMed] [Google Scholar]
  26. Norgard-Sumnicht K., Varki A. Endothelial heparan sulfate proteoglycans that bind to L-selectin have glucosamine residues with unsubstituted amino groups. J Biol Chem. 1995 May 19;270(20):12012–12024. doi: 10.1074/jbc.270.20.12012. [DOI] [PubMed] [Google Scholar]
  27. Parish C. R., Coombe D. R., Jakobsen K. B., Bennett F. A., Underwood P. A. Evidence that sulphated polysaccharides inhibit tumour metastasis by blocking tumour-cell-derived heparanases. Int J Cancer. 1987 Oct 15;40(4):511–518. doi: 10.1002/ijc.2910400414. [DOI] [PubMed] [Google Scholar]
  28. Pervin A., Gallo C., Jandik K. A., Han X. J., Linhardt R. J. Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology. 1995 Feb;5(1):83–95. doi: 10.1093/glycob/5.1.83. [DOI] [PubMed] [Google Scholar]
  29. Pervin A., al-Hakim A., Linhardt R. J. Separation of glycosaminoglycan-derived oligosaccharides by capillary electrophoresis using reverse polarity. Anal Biochem. 1994 Aug 15;221(1):182–188. doi: 10.1006/abio.1994.1395. [DOI] [PubMed] [Google Scholar]
  30. Rong G. H., Alessandri G., Sindelar W. F. Inhibition of tumor angiogenesis by hexuronyl hexosaminoglycan sulfate. Cancer. 1986 Feb 1;57(3):586–590. doi: 10.1002/1097-0142(19860201)57:3<586::aid-cncr2820570332>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  31. Roth M. Fluorescence reaction for amino acids. Anal Chem. 1971 Jun;43(7):880–882. doi: 10.1021/ac60302a020. [DOI] [PubMed] [Google Scholar]
  32. Volpi N. "Fast moving" and "slow moving" heparins, dermatan sulfate, and chondroitin sulfate: qualitative and quantitative analysis by agarose-gel electrophoresis. Carbohydr Res. 1993 Sep 2;247:263–278. doi: 10.1016/0008-6215(93)84259-9. [DOI] [PubMed] [Google Scholar]
  33. Walker A., Gallagher J. T. Structural domains of heparan sulphate for specific recognition of the C-terminal heparin-binding domain of human plasma fibronectin (HEPII). Biochem J. 1996 Aug 1;317(Pt 3):871–877. doi: 10.1042/bj3170871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Walker A., Turnbull J. E., Gallagher J. T. Specific heparan sulfate saccharides mediate the activity of basic fibroblast growth factor. J Biol Chem. 1994 Jan 14;269(2):931–935. [PubMed] [Google Scholar]
  35. Woods A. G., Cribbs D. H., Whittemore E. R., Cotman C. W. Heparan sulfate and chondroitin sulfate glycosaminoglycan attenuate beta-amyloid(25-35) induced neurodegeneration in cultured hippocampal neurons. Brain Res. 1995 Oct 30;697(1-2):53–62. doi: 10.1016/0006-8993(95)00775-l. [DOI] [PubMed] [Google Scholar]
  36. Yamada S., Murakami T., Tsuda H., Yoshida K., Sugahara K. Isolation of the porcine heparin tetrasaccharides with glucuronate 2-O-sulfate. Heparinase cleaves glucuronate 2-O-sulfate-containing disaccharides in highly sulfated blocks in heparin. J Biol Chem. 1995 Apr 14;270(15):8696–8705. [PubMed] [Google Scholar]
  37. Yamada S., Yoshida K., Sugiura M., Sugahara K., Khoo K. H., Morris H. R., Dell A. Structural studies on the bacterial lyase-resistant tetrasaccharides derived from the antithrombin III-binding site of porcine intestinal heparin. J Biol Chem. 1993 Mar 5;268(7):4780–4787. [PubMed] [Google Scholar]
  38. Yamada S., Yoshida K., Sugiura M., Sugahara K. One- and two-dimensional 1H-NMR characterization of two series of sulfated disaccharides prepared from chondroitin sulfate and heparan sulfate/heparin by bacterial eliminase digestion. J Biochem. 1992 Oct;112(4):440–447. doi: 10.1093/oxfordjournals.jbchem.a123919. [DOI] [PubMed] [Google Scholar]
  39. Yanagishita M., Hascall V. C. Characterization of heparan sulfate proteoglycans synthesized by rat ovarian granulosa cells in culture. J Biol Chem. 1983 Nov 10;258(21):12857–12864. [PubMed] [Google Scholar]
  40. van den Born J., Gunnarsson K., Bakker M. A., Kjellén L., Kusche-Gullberg M., Maccarana M., Berden J. H., Lindahl U. Presence of N-unsubstituted glucosamine units in native heparan sulfate revealed by a monoclonal antibody. J Biol Chem. 1995 Dec 29;270(52):31303–31309. doi: 10.1074/jbc.270.52.31303. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES