Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Mar 1;322(Pt 2):507–510. doi: 10.1042/bj3220507

Metal substitution of tetanus neurotoxin.

F Tonello 1, G Schiavo 1, C Montecucco 1
PMCID: PMC1218219  PMID: 9065770

Abstract

Tetanus neurotoxin was depleted of its catalytic Zn2+ ion, and the apotoxin was reconstituted with different transition metal ions. The Mn2+- and Co2+-tetanus neurotoxins are highly active in the proteolysis of vesicle-associated membrane protein/synaptobrevin, the natural substrate of this toxin, whereas Cu2+ and Fe2+ minimally supported proteolytic activity. The visible absorbance spectrum of Co2+-tetanus neurotoxin shows a maximum at 538 nm with a molar absorption coefficient of 82 M(-1) x cm(-1). These results indicate that the Zn2+ environment at the active site of tetanus neurotoxin is different from those of known Zn2+-endopeptidases and provide a structural basis for the definition of tetanus neurotoxin, and the related clostridial neurotoxins, as an independent family of metalloproteases.

Full Text

The Full Text of this article is available as a PDF (216.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angleton E. L., Van Wart H. E. Preparation by direct metal exchange and kinetic study of active site metal substituted class I and class II Clostridium histolyticum collagenases. Biochemistry. 1988 Sep 20;27(19):7413–7418. doi: 10.1021/bi00419a036. [DOI] [PubMed] [Google Scholar]
  2. Auld D. S. Removal and replacement of metal ions in metallopeptidases. Methods Enzymol. 1995;248:228–242. doi: 10.1016/0076-6879(95)48016-1. [DOI] [PubMed] [Google Scholar]
  3. Binz T., Blasi J., Yamasaki S., Baumeister A., Link E., Südhof T. C., Jahn R., Niemann H. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem. 1994 Jan 21;269(3):1617–1620. [PubMed] [Google Scholar]
  4. Bünning P., Riordan J. F. The functional role of zinc in angiotensin converting enzyme: implications for the enzyme mechanism. J Inorg Biochem. 1985 Jul;24(3):183–198. doi: 10.1016/0162-0134(85)85002-9. [DOI] [PubMed] [Google Scholar]
  5. Cornille F., Goudreau N., Ficheux D., Niemann H., Roques B. P. Solid-phase synthesis, conformational analysis and in vitro cleavage of synthetic human synaptobrevin II 1-93 by tetanus toxin L chain. Eur J Biochem. 1994 May 15;222(1):173–181. doi: 10.1111/j.1432-1033.1994.tb18855.x. [DOI] [PubMed] [Google Scholar]
  6. Foran P., Shone C. C., Dolly J. O. Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Biochemistry. 1994 Dec 27;33(51):15365–15374. doi: 10.1021/bi00255a017. [DOI] [PubMed] [Google Scholar]
  7. Galazka A., Gasse F. The present status of tetanus and tetanus vaccination. Curr Top Microbiol Immunol. 1995;195:31–53. doi: 10.1007/978-3-642-85173-5_2. [DOI] [PubMed] [Google Scholar]
  8. Gomis-Rüth F. X., Grams F., Yiallouros I., Nar H., Küsthardt U., Zwilling R., Bode W., Stöcker W. Crystal structures, spectroscopic features, and catalytic properties of cobalt(II), copper(II), nickel(II), and mercury(II) derivatives of the zinc endopeptidase astacin. A correlation of structure and proteolytic activity. J Biol Chem. 1994 Jun 24;269(25):17111–17117. [PubMed] [Google Scholar]
  9. Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
  10. Holmquist B. Characterization of the "microprotease" from Bacillus cereus. A zinc neutral endoprotease. Biochemistry. 1977 Oct 18;16(21):4591–4594. doi: 10.1021/bi00640a009. [DOI] [PubMed] [Google Scholar]
  11. Holmquist B., Vallee B. L. Metal substitutions and inhibition of thermolysin: spectra of the cobalt enzyme. J Biol Chem. 1974 Jul 25;249(14):4601–4607. [PubMed] [Google Scholar]
  12. Höhne-Zell B., Stecher B., Gratzl M. Functional characterization of the catalytic site of the tetanus toxin light chain using permeabilized adrenal chromaffin cells. FEBS Lett. 1993 Dec 20;336(1):175–180. doi: 10.1016/0014-5793(93)81635-d. [DOI] [PubMed] [Google Scholar]
  13. Li Y., Foran P., Fairweather N. F., de Paiva A., Weller U., Dougan G., Dolly J. O. A single mutation in the recombinant light chain of tetanus toxin abolishes its proteolytic activity and removes the toxicity seen after reconstitution with native heavy chain. Biochemistry. 1994 Jun 7;33(22):7014–7020. doi: 10.1021/bi00188a034. [DOI] [PubMed] [Google Scholar]
  14. Maret W., Vallee B. L. Cobalt as probe and label of proteins. Methods Enzymol. 1993;226:52–71. doi: 10.1016/0076-6879(93)26005-t. [DOI] [PubMed] [Google Scholar]
  15. Montecucco C., Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys. 1995 Nov;28(4):423–472. doi: 10.1017/s0033583500003292. [DOI] [PubMed] [Google Scholar]
  16. Morante S., Furenlid L., Schiavo G., Tonello F., Zwilling R., Montecucco C. X-ray absorption spectroscopy study of zinc coordination in tetanus neurotoxin, astacin, alkaline protease and thermolysin. Eur J Biochem. 1996 Feb 1;235(3):606–612. doi: 10.1111/j.1432-1033.1996.00606.x. [DOI] [PubMed] [Google Scholar]
  17. Pellizzari R., Rossetto O., Lozzi L., Giovedi' S., Johnson E., Shone C. C., Montecucco C. Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins. J Biol Chem. 1996 Aug 23;271(34):20353–20358. doi: 10.1074/jbc.271.34.20353. [DOI] [PubMed] [Google Scholar]
  18. Rawlings N. D., Barrett A. J. Evolutionary families of metallopeptidases. Methods Enzymol. 1995;248:183–228. doi: 10.1016/0076-6879(95)48015-3. [DOI] [PubMed] [Google Scholar]
  19. Rossetto O., Schiavo G., Montecucco C., Poulain B., Deloye F., Lozzi L., Shone C. C. SNARE motif and neurotoxins. Nature. 1994 Dec 1;372(6505):415–416. doi: 10.1038/372415a0. [DOI] [PubMed] [Google Scholar]
  20. Schiavo G., Benfenati F., Poulain B., Rossetto O., Polverino de Laureto P., DasGupta B. R., Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992 Oct 29;359(6398):832–835. doi: 10.1038/359832a0. [DOI] [PubMed] [Google Scholar]
  21. Schiavo G., Malizio C., Trimble W. S., Polverino de Laureto P., Milan G., Sugiyama H., Johnson E. A., Montecucco C. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem. 1994 Aug 12;269(32):20213–20216. [PubMed] [Google Scholar]
  22. Schiavo G., Montecucco C. Tetanus and botulism neurotoxins: isolation and assay. Methods Enzymol. 1995;248:643–652. doi: 10.1016/0076-6879(95)48041-2. [DOI] [PubMed] [Google Scholar]
  23. Schiavo G., Poulain B., Rossetto O., Benfenati F., Tauc L., Montecucco C. Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J. 1992 Oct;11(10):3577–3583. doi: 10.1002/j.1460-2075.1992.tb05441.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shone C. C., Quinn C. P., Wait R., Hallis B., Fooks S. G., Hambleton P. Proteolytic cleavage of synthetic fragments of vesicle-associated membrane protein, isoform-2 by botulinum type B neurotoxin. Eur J Biochem. 1993 Nov 1;217(3):965–971. doi: 10.1111/j.1432-1033.1993.tb18327.x. [DOI] [PubMed] [Google Scholar]
  25. Shone C. C., Roberts A. K. Peptide substrate specificity and properties of the zinc-endopeptidase activity of botulinum type B neurotoxin. Eur J Biochem. 1994 Oct 1;225(1):263–270. doi: 10.1111/j.1432-1033.1994.00263.x. [DOI] [PubMed] [Google Scholar]
  26. Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
  27. Wictome M., Rossetto O., Montecucco C., Shone C. C. Substrate residues N-terminal to the cleavage site of botulinum type B neurotoxin play a role in determining the specificity of its endopeptidase activity. FEBS Lett. 1996 May 20;386(2-3):133–136. doi: 10.1016/0014-5793(96)00431-0. [DOI] [PubMed] [Google Scholar]
  28. Wright J. F., Pernollet M., Reboul A., Aude C., Colomb M. G. Identification and partial characterization of a low affinity metal-binding site in the light chain of tetanus toxin. J Biol Chem. 1992 May 5;267(13):9053–9058. [PubMed] [Google Scholar]
  29. Yamasaki S., Hu Y., Binz T., Kalkuhl A., Kurazono H., Tamura T., Jahn R., Kandel E., Niemann H. Synaptobrevin/vesicle-associated membrane protein (VAMP) of Aplysia californica: structure and proteolysis by tetanus toxin and botulinal neurotoxins type D and F. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4688–4692. doi: 10.1073/pnas.91.11.4688. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES