Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Mar 1;322(Pt 2):535–542. doi: 10.1042/bj3220535

Chemistry of collagen cross-linking: biochemical changes in collagen during the partial mineralization of turkey leg tendon.

L Knott 1, J F Tarlton 1, A J Bailey 1
PMCID: PMC1218223  PMID: 9065774

Abstract

With age, the proximal sections of turkey leg tendons become calcified, and this phenomenon has led to their use as a model for collagen mineralization. Mineralizing turkey leg tendon was used in this study to characterize further the composition and cross-linking of collagen in calcified tissues. The cross-link profiles of mineralizing collagen are significantly different from those of other collagenous matrices with characteristically low amounts of hydroxylysyl-pyridinoline and the presence of lysyl-pyridinoline and pyrrolic cross-links. However, the presence of the immature cross-link precursors previously reported in calcifying tissues was not supported in the present study, and was found to be due to the decalcification procedure using EDTA. Analysis of tendons from young birds demonstrated differences in the cross-link profile which indicated a higher level of hydroxylation of specific triple-helical lysines involved in cross-linking of the proximal tendon. This may be related to later calcification, suggesting that this part of the tendon is predestined to be calcified. The minimal changes in lysyl hydroxylation in both regions of the tendon with age were in contrast with the large changes in the cross-link profile, indicating differential hydroxylation of the helical and telopeptide lysine residues. Changes with age in the collagen matrix, its turnover and thermal properties in both the proximal and distal sections of the tendon clearly demonstrate that a new and modified matrix is formed throughout the tendon, and that a different type of matrix is formed at each site.

Full Text

The Full Text of this article is available as a PDF (309.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey A. J., Light N. D., Atkins E. D. Chemical cross-linking restrictions on models for the molecular organization of the collagen fibre. Nature. 1980 Nov 27;288(5789):408–410. doi: 10.1038/288408a0. [DOI] [PubMed] [Google Scholar]
  2. Bailey A. J., Sims T. J., Avery N. C., Miles C. A. Chemistry of collagen cross-links: glucose-mediated covalent cross-linking of type-IV collagen in lens capsules. Biochem J. 1993 Dec 1;296(Pt 2):489–496. doi: 10.1042/bj2960489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banes A. J., Yamauchi M., Mechanic G. L. Nonmineralized and mineralized compartments of bone: the role of pyridinoline in nonmineralized collagen. Biochem Biophys Res Commun. 1983 Jun 29;113(3):975–981. doi: 10.1016/0006-291x(83)91094-x. [DOI] [PubMed] [Google Scholar]
  4. Bannister D. W., Burns A. B. Adaptation of the Bergman and Loxley technique for hydroxyproline determination to the autoanalyzer and its use in determining plasma hydroxyproline in the domestic fowl. Analyst. 1970 Jun;95(131):596–600. doi: 10.1039/an9709500596. [DOI] [PubMed] [Google Scholar]
  5. Berthet-Colominas C., Miller A., White S. W. Structural study of the calcifying collagen in turkey leg tendons. J Mol Biol. 1979 Nov 5;134(3):431–445. doi: 10.1016/0022-2836(79)90362-0. [DOI] [PubMed] [Google Scholar]
  6. Burjanadze T. V. Thermodynamic substantiation of water-bridged collagen structure. Biopolymers. 1992 Aug;32(8):941–949. doi: 10.1002/bip.360320805. [DOI] [PubMed] [Google Scholar]
  7. Gerriets J. E., Curwin S. L., Last J. A. Tendon hypertrophy is associated with increased hydroxylation of nonhelical lysine residues at two specific cross-linking sites in type I collagen. J Biol Chem. 1993 Dec 5;268(34):25553–25560. [PubMed] [Google Scholar]
  8. Jackson S. R., Avery N. C., Tarlton J. F., Eckford S. D., Abrams P., Bailey A. J. Changes in metabolism of collagen in genitourinary prolapse. Lancet. 1996 Jun 15;347(9016):1658–1661. doi: 10.1016/s0140-6736(96)91489-0. [DOI] [PubMed] [Google Scholar]
  9. Kleiner D. E., Stetler-Stevenson W. G. Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem. 1994 May 1;218(2):325–329. doi: 10.1006/abio.1994.1186. [DOI] [PubMed] [Google Scholar]
  10. Knott L., Whitehead C. C., Fleming R. H., Bailey A. J. Biochemical changes in the collagenous matrix of osteoporotic avian bone. Biochem J. 1995 Sep 15;310(Pt 3):1045–1051. doi: 10.1042/bj3101045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kuboki Y., Kudo A., Mizuno M., Kawamura M. Time-dependent changes of collagen cross-links and their precursors in the culture of osteogenic cells. Calcif Tissue Int. 1992 May;50(5):473–480. doi: 10.1007/BF00296780. [DOI] [PubMed] [Google Scholar]
  12. Kuboki Y., Mechanic G. L. Comparative molecular distribution of cross-link in bone and dentin collagen. Structure-function relationships. Calcif Tissue Int. 1982 May;34(3):306–308. doi: 10.1007/BF02411256. [DOI] [PubMed] [Google Scholar]
  13. Kuypers R., Tyler M., Kurth L. B., Jenkins I. D., Horgan D. J. Identification of the loci of the collagen-associated Ehrlich chromogen in type I collagen confirms its role as a trivalent cross-link. Biochem J. 1992 Apr 1;283(Pt 1):129–136. doi: 10.1042/bj2830129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LEVENE C. I., GROSS J. Alterations in state of molecular aggregation of collagen induced in chick embryos by beta-aminopropionitrile (lathyrus factor). J Exp Med. 1959 Nov 1;110:771–790. doi: 10.1084/jem.110.5.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lees S., Barnard S. M., Churchill D. The variation of sonic plesio-velocity in dose dependent lathyritic rabbit femurs. Ultrasound Med Biol. 1987 Jan;13(1):19–24. doi: 10.1016/0301-5629(87)90156-6. [DOI] [PubMed] [Google Scholar]
  16. Lees S., Eyre D. R., Barnard S. M. BAPN dose dependence of mature crosslinking in bone matrix collagen of rabbit compact bone: corresponding variation of sonic velocity and equatorial diffraction spacing. Connect Tissue Res. 1990;24(2):95–105. doi: 10.3109/03008209009152426. [DOI] [PubMed] [Google Scholar]
  17. Light N. D., Bailey A. J. Covalent cross-links in collagen. Methods Enzymol. 1982;82(Pt A):360–372. doi: 10.1016/0076-6879(82)82073-9. [DOI] [PubMed] [Google Scholar]
  18. Light N. D. Estimation of types I and III collagens in whole tissue by quantitation of CNBr peptides on SDS-polyacrylamide gels. Biochim Biophys Acta. 1982 Mar 18;702(1):30–36. doi: 10.1016/0167-4838(82)90024-3. [DOI] [PubMed] [Google Scholar]
  19. Miles C. A., Burjanadze T. V., Bailey A. J. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J Mol Biol. 1995 Jan 27;245(4):437–446. doi: 10.1006/jmbi.1994.0035. [DOI] [PubMed] [Google Scholar]
  20. Otsubo K., Katz E. P., Mechanic G. L., Yamauchi M. Cross-linking connectivity in bone collagen fibrils: the COOH-terminal locus of free aldehyde. Biochemistry. 1992 Jan 21;31(2):396–402. doi: 10.1021/bi00117a013. [DOI] [PubMed] [Google Scholar]
  21. Privalov P. L. Stability of proteins. Proteins which do not present a single cooperative system. Adv Protein Chem. 1982;35:1–104. [PubMed] [Google Scholar]
  22. Robins S. P., Bailey A. J. The chemistry of the collagen cross-links. The mechanism of stabilization of the reducible intermediate cross-links. Biochem J. 1975 Aug;149(2):381–385. doi: 10.1042/bj1490381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robins S. P., Duncan A. Pyridinium crosslinks of bone collagen and their location in peptides isolated from rat femur. Biochim Biophys Acta. 1987 Aug 21;914(3):233–239. doi: 10.1016/0167-4838(87)90282-2. [DOI] [PubMed] [Google Scholar]
  24. Royce P. M., Barnes M. J. Failure of highly purified lysyl hydroxylase to hydroxylate lysyl residues in the non-helical regions of collagen. Biochem J. 1985 Sep 1;230(2):475–480. doi: 10.1042/bj2300475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sims T. J., Bailey A. J. Quantitative analysis of collagen and elastin cross-links using a single-column system. J Chromatogr. 1992 Nov 6;582(1-2):49–55. doi: 10.1016/0378-4347(92)80301-6. [DOI] [PubMed] [Google Scholar]
  26. Steinmann B., Eyre D. R., Shao P. Urinary pyridinoline cross-links in Ehlers-Danlos syndrome type VI. Am J Hum Genet. 1995 Dec;57(6):1505–1508. [PMC free article] [PubMed] [Google Scholar]
  27. Tarlton J. F., Knight P. J. Comparison of reflectance and transmission densitometry, using document and laser scanners, for quantitation of stained Western blots. Anal Biochem. 1996 May 15;237(1):123–128. doi: 10.1006/abio.1996.0209. [DOI] [PubMed] [Google Scholar]
  28. Woessner J. F., Jr Quantification of matrix metalloproteinases in tissue samples. Methods Enzymol. 1995;248:510–528. doi: 10.1016/0076-6879(95)48033-1. [DOI] [PubMed] [Google Scholar]
  29. Yamauchi M., Katz E. P., Otsubo K., Teraoka K., Mechanic G. L. Cross-linking and stereospecific structure of collagen in mineralized and nonmineralized skeletal tissues. Connect Tissue Res. 1989;21(1-4):159–169. doi: 10.3109/03008208909050006. [DOI] [PubMed] [Google Scholar]
  30. Yamauchi M., Katz E. P. The post-translational chemistry and molecular packing of mineralizing tendon collagens. Connect Tissue Res. 1993;29(2):81–98. doi: 10.3109/03008209309014236. [DOI] [PubMed] [Google Scholar]
  31. le Lous M., Flandin F., Herbage D., Allain J. C. Influence of collagen denaturation on the chemorheological properties of skin, assessed by differential scanning calorimetry and hydrothermal isometric tension measurement. Biochim Biophys Acta. 1982 Aug 6;717(2):295–300. doi: 10.1016/0304-4165(82)90182-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES