Abstract
Prostaglandin (PG) E2 binds to PGE receptor EP3 subtype and induces Gi activity. To assess the role of the interaction of the carboxylic acid group of agonists and its putative binding site, Arg-309 in the seventh transmembrane domain of EP3alpha receptor, in receptor activation, we have mutated the positively charged Arg-309 to the polar but uncharged Gln (EP3alpha-R309Q) and Asn (EP3alpha-R309N), and to the non-polar Leu (EP3alpha-R309L). Wild-type, EP3alpha-R309Q and EP3alpha-R309N receptors showed high-affinity binding for PGE2, but the EP3alpha-R309L receptor showed very-low-affinity binding. Guanosine 5'-[gamma-thio]triphosphate increased the PGE2 binding to the wild-type receptor, decreased the binding to EP3alpha-R309Q and EP3alpha-R309N receptors, but did not affect that to the EP3alpha-R309L receptor. Furthermore we examined the Gi activities of two types of EP3 agonist, TEI-3356 with a negatively charged carboxylic acid, and TEI-4343, a methyl ester of TEI-3356 with an uncharged but polar group, towards those receptors. Both agonists inhibited the forskolin-stimulated cAMP formation in wild-type, EP3alpha-R309Q and EP3alpha-R309N receptors in the same concentration-dependent manner, but the agonists showed a very low inhibition of EP3alpha-R309L receptor. These findings demonstrate that the hydrogen-bonding interaction of EP3 agonists and residue 309 in the seventh transmembrane domain of the EP3alpha receptor is sufficient for the functional activation of the EP3alpha receptor.
Full Text
The Full Text of this article is available as a PDF (270.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birnbaumer L., Abramowitz J., Brown A. M. Receptor-effector coupling by G proteins. Biochim Biophys Acta. 1990 May 7;1031(2):163–224. doi: 10.1016/0304-4157(90)90007-y. [DOI] [PubMed] [Google Scholar]
- Chen M. C., Amirian D. A., Toomey M., Sanders M. J., Soll A. H. Prostanoid inhibition of canine parietal cells: mediation by the inhibitory guanosine triphosphate-binding protein of adenylate cyclase. Gastroenterology. 1988 May;94(5 Pt 1):1121–1129. doi: 10.1016/0016-5085(88)90002-9. [DOI] [PubMed] [Google Scholar]
- Coleman R. A., Smith W. L., Narumiya S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev. 1994 Jun;46(2):205–229. [PubMed] [Google Scholar]
- Dohlman H. G., Thorner J., Caron M. G., Lefkowitz R. J. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem. 1991;60:653–688. doi: 10.1146/annurev.bi.60.070191.003253. [DOI] [PubMed] [Google Scholar]
- Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Funk C. D., Furci L., Moran N., Fitzgerald G. A. Point mutation in the seventh hydrophobic domain of the human thromboxane A2 receptor allows discrimination between agonist and antagonist binding sites. Mol Pharmacol. 1993 Nov;44(5):934–939. [PubMed] [Google Scholar]
- Garcia-Perez A., Smith W. L. Apical-basolateral membrane asymmetry in canine cortical collecting tubule cells. Bradykinin, arginine vasopressin, prostaglandin E2 interrelationships. J Clin Invest. 1984 Jul;74(1):63–74. doi: 10.1172/JCI111419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang C., Tai H. H. Expression and site-directed mutagenesis of mouse prostaglandin E2 receptor EP3 subtype in insect cells. Biochem J. 1995 Apr 15;307(Pt 2):493–498. doi: 10.1042/bj3070493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ippolito J. A., Alexander R. S., Christianson D. W. Hydrogen bond stereochemistry in protein structure and function. J Mol Biol. 1990 Oct 5;215(3):457–471. doi: 10.1016/s0022-2836(05)80364-x. [DOI] [PubMed] [Google Scholar]
- Ito W., Ishiguro H., Kurosawa Y. A general method for introducing a series of mutations into cloned DNA using the polymerase chain reaction. Gene. 1991 Jun 15;102(1):67–70. doi: 10.1016/0378-1119(91)90539-n. [DOI] [PubMed] [Google Scholar]
- Krall J. F., Barrett J. D., Jamgotchian N., Korenman S. G. Interaction of prostaglandin E2 and beta-adrenergic catecholamines in the regulation of uterine smooth muscle motility and adenylate cyclase in the rat. J Endocrinol. 1984 Sep;102(3):329–336. doi: 10.1677/joe.0.1020329. [DOI] [PubMed] [Google Scholar]
- Negishi M., Harazono A., Sugimoto Y., Hazato A., Kurozumi S., Ichikawa A. Selective coupling of prostaglandin E receptor EP3D to multiple G proteins depending on interaction of the carboxylic acid of agonist and arginine residue of seventh transmembrane domain. Biochem Biophys Res Commun. 1995 Jul 17;212(2):279–285. doi: 10.1006/bbrc.1995.1967. [DOI] [PubMed] [Google Scholar]
- Negishi M., Harazono A., Sugimoto Y., Hazato A., Kurozumi S., Ichikawa A. TEI-3356, a highly selective agonist for the prostaglandin EP3 receptor. Prostaglandins. 1994 Nov;48(5):275–283. doi: 10.1016/0090-6980(94)90028-0. [DOI] [PubMed] [Google Scholar]
- Negishi M., Irie A., Sugimoto Y., Namba T., Ichikawa A. Selective coupling of prostaglandin E receptor EP3D to Gi and Gs through interaction of alpha-carboxylic acid of agonist and arginine residue of seventh transmembrane domain. J Biol Chem. 1995 Jul 7;270(27):16122–16127. doi: 10.1074/jbc.270.27.16122. [DOI] [PubMed] [Google Scholar]
- Negishi M., Ito S., Tanaka T., Yokohama H., Hayashi H., Katada T., Ui M., Hayaishi O. Covalent cross-linking of prostaglandin E receptor from bovine adrenal medulla with a pertussis toxin-insensitive guanine nucleotide-binding protein. J Biol Chem. 1987 Sep 5;262(25):12077–12084. [PubMed] [Google Scholar]
- Negishi M., Sugimoto Y., Hayashi Y., Namba T., Honda A., Watabe A., Narumiya S., Ichikawa A. Functional interaction of prostaglandin E receptor EP3 subtype with guanine nucleotide-binding proteins, showing low-affinity ligand binding. Biochim Biophys Acta. 1993 Feb 17;1175(3):343–350. doi: 10.1016/0167-4889(93)90227-g. [DOI] [PubMed] [Google Scholar]
- Negishi M., Sugimoto Y., Ichikawa A. Molecular mechanisms of diverse actions of prostanoid receptors. Biochim Biophys Acta. 1995 Oct 26;1259(1):109–119. doi: 10.1016/0005-2760(95)00146-4. [DOI] [PubMed] [Google Scholar]
- Negishi M., Sugimoto Y., Irie A., Narumiya S., Ichikawa A. Two isoforms of prostaglandin E receptor EP3 subtype. Different COOH-terminal domains determine sensitivity to agonist-induced desensitization. J Biol Chem. 1993 May 5;268(13):9517–9521. [PubMed] [Google Scholar]
- Oikawa S., Inuzuka C., Kuroki M., Matsuoka Y., Kosaki G., Nakazato H. Cell adhesion activity of non-specific cross-reacting antigen (NCA) and carcinoembryonic antigen (CEA) expressed on CHO cell surface: homophilic and heterophilic adhesion. Biochem Biophys Res Commun. 1989 Oct 16;164(1):39–45. doi: 10.1016/0006-291x(89)91679-3. [DOI] [PubMed] [Google Scholar]
- Strader C. D., Sigal I. S., Candelore M. R., Rands E., Hill W. S., Dixon R. A. Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. J Biol Chem. 1988 Jul 25;263(21):10267–10271. [PubMed] [Google Scholar]
- Sugimoto Y., Namba T., Honda A., Hayashi Y., Negishi M., Ichikawa A., Narumiya S. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP3 subtype. J Biol Chem. 1992 Apr 5;267(10):6463–6466. [PubMed] [Google Scholar]
- Yamamoto Y., Kamiya K., Terao S. Modeling of human thromboxane A2 receptor and analysis of the receptor-ligand interaction. J Med Chem. 1993 Apr 2;36(7):820–825. doi: 10.1021/jm00059a005. [DOI] [PubMed] [Google Scholar]