Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Mar 1;322(Pt 2):615–623. doi: 10.1042/bj3220615

Unsaturated fatty acids enhance cell yields and perturb the energy metabolism of an antibody-secreting hybridoma.

M Butler 1, N Huzel 1, N Barnabé 1
PMCID: PMC1218234  PMID: 9065785

Abstract

Growth of the murine B-lymphocyte cell line CC9C10 and the myeloma SP2/0 was enhanced significantly by the presence of the unsaturated fatty acids, oleic and linoleic acids in serum-free culture. The cellular content of linoleic and oleic acids gradually increased during continuous culture passage, with no evidence of regulatory control. Over 10 culture passages in the presence of these fatty acids, the unsaturated/saturated fatty acid ratio of all cellular lipid fractions increased substantially. Most of the fatty acid accumulated in the polar lipid fraction (more than 74%) and only a small proportion was oxidized to CO2 (0.5%). Linoleic acid caused a decrease to one-eighth in the rate of metabolism of glutamine and a 1.4-fold increase in the rate of metabolism of glucose. There was no change in the relative flux of glucose through the pathways of glycolysis, pentose phosphate or the tricarboxylic acid cycle. The changes in energy metabolism were reversed when the cells were removed from fatty acid-supplemented medium. The most plausible explanation for these effects is the observed decrease in the rate of uptake of glutamine into cells loaded with linoleic acid. Growth of the CC9C10 cells in linoleic acid caused the Km of glutamine uptake to increase from 2.7 to 23 mM, whereas glucose uptake was unaffected.

Full Text

The Full Text of this article is available as a PDF (550.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ash J. F., Igo R. P., Jr Numerical analysis reveals complexities of glutamate transport. Biochim Biophys Acta. 1993 Jun 18;1149(1):109–118. doi: 10.1016/0005-2736(93)90031-t. [DOI] [PubMed] [Google Scholar]
  2. Bailey J. M., Dunbar L. M. Essential fatty acid requirements of cells in tissue culture: a review. Exp Mol Pathol. 1973 Apr;18(2):142–161. doi: 10.1016/0014-4800(73)90013-0. [DOI] [PubMed] [Google Scholar]
  3. Bandyopadhyay G. K., Imagawa W., Wallace D., Nandi S. Linoleate metabolites enhance the in vitro proliferative response of mouse mammary epithelial cells to epidermal growth factor. J Biol Chem. 1987 Feb 25;262(6):2750–2756. [PubMed] [Google Scholar]
  4. Bontemps F., Hue L., Hers H. G. Phosphorylation of glucose in isolated rat hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. Biochem J. 1978 Aug 15;174(2):603–611. doi: 10.1042/bj1740603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Butler M., Huzel N. The effect of fatty acids on hybridoma cell growth and antibody productivity in serum-free cultures. J Biotechnol. 1995 Apr 15;39(2):165–173. doi: 10.1016/0168-1656(95)00017-k. [DOI] [PubMed] [Google Scholar]
  7. Butler M., Thilly W. G. MDCK microcarrier cultured: seeding density effects and amino acid utilization. In Vitro. 1982 Mar;18(3 Pt 1):213–219. doi: 10.1007/BF02618573. [DOI] [PubMed] [Google Scholar]
  8. Calder P. C., Bond J. A., Bevan S. J., Hunt S. V., Newsholme E. A. Effect of fatty acids on the proliferation of concanavalin A-stimulated rat lymph node lymphocytes. Int J Biochem. 1991;23(5-6):579–588. doi: 10.1016/0020-711x(87)90052-8. [DOI] [PubMed] [Google Scholar]
  9. Calder P. C., Yaqoob P., Harvey D. J., Watts A., Newsholme E. A. Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity. Biochem J. 1994 Jun 1;300(Pt 2):509–518. doi: 10.1042/bj3000509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cleveland W. L., Wood I., Erlanger B. F. Routine large-scale production of monoclonal antibodies in a protein-free culture medium. J Immunol Methods. 1983 Jan 28;56(2):221–234. doi: 10.1016/0022-1759(83)90414-3. [DOI] [PubMed] [Google Scholar]
  11. Cuthbert J. A., Lipsky P. E. Lipoproteins may provide fatty acids necessary for human lymphocyte proliferation by both low density lipoprotein receptor-dependent and -independent mechanisms. J Biol Chem. 1989 Aug 15;264(23):13468–13474. [PubMed] [Google Scholar]
  12. Doi O., Doi F., Schroeder F., Alberts A. W., Vagelos P. R. Manipulation of fatty acid composition of membrane phospholipid and its effects on cell growth in mouse LM cells. Biochim Biophys Acta. 1978 May 18;509(2):239–250. doi: 10.1016/0005-2736(78)90044-5. [DOI] [PubMed] [Google Scholar]
  13. Fitzpatrick L., Jenkins H. A., Butler M. Glucose and glutamine metabolism of a murine B-lymphocyte hybridoma grown in batch culture. Appl Biochem Biotechnol. 1993 Nov;43(2):93–116. doi: 10.1007/BF02916435. [DOI] [PubMed] [Google Scholar]
  14. Froesch E. R., Zapf J. Insulin-like growth factors and insulin: comparative aspects. Diabetologia. 1985 Aug;28(8):485–493. doi: 10.1007/BF00281982. [DOI] [PubMed] [Google Scholar]
  15. Grammatikos S. I., Subbaiah P. V., Victor T. A., Miller W. M. Diverse effects of essential (n-6 and n-3) fatty acids on cultured cells. Cytotechnology. 1994;15(1-3):31–50. doi: 10.1007/BF00762377. [DOI] [PubMed] [Google Scholar]
  16. Kaluzny M. A., Duncan L. A., Merritt M. V., Epps D. E. Rapid separation of lipid classes in high yield and purity using bonded phase columns. J Lipid Res. 1985 Jan;26(1):135–140. [PubMed] [Google Scholar]
  17. Karsten S., Schäfer G., Schauder P. Cytokine production and DNA synthesis by human peripheral lymphocytes in response to palmitic, stearic, oleic, and linoleic acid. J Cell Physiol. 1994 Oct;161(1):15–22. doi: 10.1002/jcp.1041610103. [DOI] [PubMed] [Google Scholar]
  18. Kawamoto T., Sato J. D., Le A., McClure D. B., Sato G. H. Development of a serum-free medium for growth of NS-1 mouse myeloma cells and its application to the isolation of NS-1 hybridomas. Anal Biochem. 1983 Apr 15;130(2):445–453. doi: 10.1016/0003-2697(83)90614-0. [DOI] [PubMed] [Google Scholar]
  19. Kelly J. P., Parker C. W. Effects of arachidonic acid and other unsaturated fatty acids on mitogenesis in human lymphocytes. J Immunol. 1979 Apr;122(4):1556–1562. [PubMed] [Google Scholar]
  20. Kovár J., Franek F. Serum-free medium for hybridoma and parental myeloma cell cultivation. Methods Enzymol. 1986;121:277–292. doi: 10.1016/0076-6879(86)21025-3. [DOI] [PubMed] [Google Scholar]
  21. Needleman P., Turk J., Jakschik B. A., Morrison A. R., Lefkowith J. B. Arachidonic acid metabolism. Annu Rev Biochem. 1986;55:69–102. doi: 10.1146/annurev.bi.55.070186.000441. [DOI] [PubMed] [Google Scholar]
  22. Nilausen K. Role of fatty acids in growth-promoting effect of serum albumin on hamster cells in vitro. J Cell Physiol. 1978 Jul;96(1):1–14. doi: 10.1002/jcp.1040960102. [DOI] [PubMed] [Google Scholar]
  23. Petch D., Butler M. Profile of energy metabolism in a murine hybridoma: glucose and glutamine utilization. J Cell Physiol. 1994 Oct;161(1):71–76. doi: 10.1002/jcp.1041610110. [DOI] [PubMed] [Google Scholar]
  24. Püttmann M., Krug H., von Ochsenstein E., Kattermann R. Fast HPLC determination of serum free fatty acids in the picomole range. Clin Chem. 1993 May;39(5):825–832. [PubMed] [Google Scholar]
  25. Rintoul D. A., Sklar L. A., Simoni R. D. Membrane lipid modification of chinese hamster ovary cells. Thermal properties of membrane phospholipids. J Biol Chem. 1978 Oct 25;253(20):7447–7452. [PubMed] [Google Scholar]
  26. Rockwell G. A., Sato G. H., McClure D. B. The growth requirements of SV40 virus transformed Balb/c-3T3 cells in serum-free monolayer culture. J Cell Physiol. 1980 May;103(2):323–331. doi: 10.1002/jcp.1041030218. [DOI] [PubMed] [Google Scholar]
  27. Rose D. P., Connolly J. M. Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture. Cancer Res. 1990 Nov 15;50(22):7139–7144. [PubMed] [Google Scholar]
  28. Rosenthal M. D. Fatty acid metabolism of isolated mammalian cells. Prog Lipid Res. 1987;26(2):87–124. doi: 10.1016/0163-7827(87)90009-9. [DOI] [PubMed] [Google Scholar]
  29. Schmid G., Zilg H., Eberhard U., Johannsen R. Effect of free fatty acids and phospholipids on growth of and product formation by recombinant baby hamster kidney (rBHK) and Chinese hamster ovary (rCHO) cells in culture. J Biotechnol. 1991 Feb;17(2):155–167. doi: 10.1016/0168-1656(91)90006-h. [DOI] [PubMed] [Google Scholar]
  30. Spector A. A., Mathur S. N., Kaduce T. L., Hyman B. T. Lipid nutrition and metabolism of cultured mammalian cells. Prog Lipid Res. 1980;19(3-4):155–186. doi: 10.1016/0163-7827(80)90003-x. [DOI] [PubMed] [Google Scholar]
  31. Tharakan J. P., Lucas A., Chau P. C. Hybridoma growth and antibody secretion in serum-supplemented and low protein serum-free media. J Immunol Methods. 1986 Nov 20;94(1-2):225–235. doi: 10.1016/0022-1759(86)90237-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES