Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Mar 15;322(Pt 3):709–718. doi: 10.1042/bj3220709

Chemoattractant-induced respiratory burst: increases in cytosolic Ca2+ concentrations are essential and synergize with a kinetically distinct second signal.

R Foyouzi-Youssefi 1, F Petersson 1, D P Lew 1, K H Krause 1, O Nüsse 1
PMCID: PMC1218246  PMID: 9148740

Abstract

The role of the cytosolic free Ca2+ concentration ([Ca2+]c) and its relationship to other second messengers in the signalling between chemoattractant [e.g. N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP)] receptors and the NADPH oxidase is still poorly understood. In this study, we have used thapsigargin, an inhibitor of the Ca2+-ATPase of intracellular stores, as a tool to selectively manipulate Ca2+ release from intracellular stores and Ca2+ influx across the plasma membrane. We thereby temporarily separated the Ca2+ signal from other signals generated by fMLP and analysed the consequences on the respiratory burst. Under all conditions investigated, the extent of fMLP-induced respiratory burst activation was critically determined by [Ca2+]c elevation. fMLP was unable to activate the respiratory burst without [Ca2+]c elevation. Thapsigargin-induced Ca2+ influx activated the respiratory burst in the absence of fMLP, but only to approx. 20% of the values observed in the presence of fMLP. The second signal generated by fMLP did not activate the respiratory burst by itself, but acted in synergy with [Ca2+]c elevation. The second signal was long lasting (>15 min) provided that there was no rise in [Ca2+]c and that the receptor was continuously occupied. The second signal was inactivated by high [Ca2+]c elevation. Our results demonstrate that [Ca2+]c elevations are an essential step in the signalling between the fMLP receptor and NADPH oxidase. They also provide novel information about the properties of the second Ca2+-independent signal that activates the respiratory burst in synergy with [Ca2+]c.

Full Text

The Full Text of this article is available as a PDF (743.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcaro A., Wymann M. P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J. 1993 Dec 1;296(Pt 2):297–301. doi: 10.1042/bj2960297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Christiansen N. O., Larsen C. S., Esmann V. A study on the role of protein kinase C and intracellular calcium in the activation of superoxide generation. Biochim Biophys Acta. 1988 Oct 7;971(3):317–324. doi: 10.1016/0167-4889(88)90147-4. [DOI] [PubMed] [Google Scholar]
  3. Clark R. A., Leidal K. G., Pearson D. W., Nauseef W. M. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. J Biol Chem. 1987 Mar 25;262(9):4065–4074. [PubMed] [Google Scholar]
  4. Cockcroft S. G-protein-regulated phospholipases C, D and A2-mediated signalling in neutrophils. Biochim Biophys Acta. 1992 Aug 14;1113(2):135–160. [PubMed] [Google Scholar]
  5. Cross M. J., Stewart A., Hodgkin M. N., Kerr D. J., Wakelam M. J. Wortmannin and its structural analogue demethoxyviridin inhibit stimulated phospholipase A2 activity in Swiss 3T3 cells. Wortmannin is not a specific inhibitor of phosphatidylinositol 3-kinase. J Biol Chem. 1995 Oct 27;270(43):25352–25355. doi: 10.1074/jbc.270.43.25352. [DOI] [PubMed] [Google Scholar]
  6. Dahlgren C. The calcium ionophore ionomycin can prime, but not activate, the reactive oxygen generating system in differentiated HL-60 cells. J Leukoc Biol. 1989 Jul;46(1):15–24. doi: 10.1002/jlb.46.1.15. [DOI] [PubMed] [Google Scholar]
  7. Dana R., Malech H. L., Levy R. The requirement for phospholipase A2 for activation of the assembled NADPH oxidase in human neutrophils. Biochem J. 1994 Jan 1;297(Pt 1):217–223. doi: 10.1042/bj2970217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Demaurex N., Lew D. P., Krause K. H. Cyclopiazonic acid depletes intracellular Ca2+ stores and activates an influx pathway for divalent cations in HL-60 cells. J Biol Chem. 1992 Feb 5;267(4):2318–2324. [PubMed] [Google Scholar]
  9. Demaurex N., Monod A., Lew D. P., Krause K. H. Characterization of receptor-mediated and store-regulated Ca2+ influx in human neutrophils. Biochem J. 1994 Feb 1;297(Pt 3):595–601. doi: 10.1042/bj2970595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dewald B., Thelen M., Baggiolini M. Two transduction sequences are necessary for neutrophil activation by receptor agonists. J Biol Chem. 1988 Nov 5;263(31):16179–16184. [PubMed] [Google Scholar]
  11. Di Virgilio F., Lew D. P., Pozzan T. Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature. 1984 Aug 23;310(5979):691–693. doi: 10.1038/310691a0. [DOI] [PubMed] [Google Scholar]
  12. Favre C. J., Lew D. P., Krause K. H. Rapid heparin-sensitive Ca2+ release following Ca(2+)-ATPase inhibition in intact HL-60 granulocytes. Evidence for Ins(1,4,5)P3-dependent Ca2+ cycling across the membrane of Ca2+ stores. Biochem J. 1994 Aug 15;302(Pt 1):155–162. doi: 10.1042/bj3020155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fontana J. A., Wright D. G., Schiffman E., Corcoran B. A., Deisseroth A. B. Development of chemotactic responsiveness in myeloid precursor cells: studies with a human leukemia cell line. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3664–3668. doi: 10.1073/pnas.77.6.3664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Forslund T., Sundqvist T. Nitric oxide regulates the chemiluminescence from stimulated human neutrophils. APMIS. 1995 Nov;103(11):813–817. doi: 10.1111/j.1699-0463.1995.tb01439.x. [DOI] [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Janeczek A. H., Marasco W. A., van Alten P. J., Walter R. J. Autoradiographic analysis of formylpeptide chemoattractant binding, uptake and intracellular processing by neutrophils. J Cell Sci. 1989 Sep;94(Pt 1):155–168. doi: 10.1242/jcs.94.1.155. [DOI] [PubMed] [Google Scholar]
  17. Klotz K. N., Jesaitis A. J. Neutrophil chemoattractant receptors and the membrane skeleton. Bioessays. 1994 Mar;16(3):193–198. doi: 10.1002/bies.950160310. [DOI] [PubMed] [Google Scholar]
  18. Lew P. D., Monod A., Krause K. H., Waldvogel F. A., Biden T. J., Schlegel W. The role of cytosolic free calcium in the generation of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in HL-60 cells. Differential effects of chemotactic peptide receptor stimulation at distinct Ca2+ levels. J Biol Chem. 1986 Oct 5;261(28):13121–13127. [PubMed] [Google Scholar]
  19. Lundqvist H., Dahlgren C. Isoluminol-enhanced chemiluminescence: a sensitive method to study the release of superoxide anion from human neutrophils. Free Radic Biol Med. 1996;20(6):785–792. doi: 10.1016/0891-5849(95)02189-2. [DOI] [PubMed] [Google Scholar]
  20. Lundqvist H., Follin P., Khalfan L., Dahlgren C. Phorbol myristate acetate-induced NADPH oxidase activity in human neutrophils: only half the story has been told. J Leukoc Biol. 1996 Feb;59(2):270–279. doi: 10.1002/jlb.59.2.270. [DOI] [PubMed] [Google Scholar]
  21. Lärfars G., Gyllenhammar H. Measurement of methemoglobin formation from oxyhemoglobin. A real-time, continuous assay of nitric oxide release by human polymorphonuclear leukocytes. J Immunol Methods. 1995 Jul 17;184(1):53–62. doi: 10.1016/0022-1759(95)00074-k. [DOI] [PubMed] [Google Scholar]
  22. Maher R. J., Cao D., Boxer L. A., Petty H. R. Simultaneous calcium-dependent delivery of neutrophil lactoferrin and reactive oxygen metabolites to erythrocyte targets: evidence supporting granule-dependent triggering of superoxide deposition. J Cell Physiol. 1993 Aug;156(2):226–234. doi: 10.1002/jcp.1041560203. [DOI] [PubMed] [Google Scholar]
  23. Markert M., Andrews P. C., Babior B. M. Measurement of O2- production by human neutrophils. The preparation and assay of NADPH oxidase-containing particles from human neutrophils. Methods Enzymol. 1984;105:358–365. doi: 10.1016/s0076-6879(84)05048-5. [DOI] [PubMed] [Google Scholar]
  24. McPhail L. C., Clayton C. C., Snyderman R. The NADPH oxidase of human polymorphonuclear leukocytes. Evidence for regulation by multiple signals. J Biol Chem. 1984 May 10;259(9):5768–5775. [PubMed] [Google Scholar]
  25. Mullmann T. J., Cheewatrakoolpong B., Anthes J. C., Siegel M. I., Egan R. W., Billah M. M. Phospholipase C and phospholipase D are activated independently of each other in chemotactic peptide-stimulated human neutrophils. J Leukoc Biol. 1993 Jun;53(6):630–635. doi: 10.1002/jlb.53.6.630. [DOI] [PubMed] [Google Scholar]
  26. Murray-Whelan R., Reid J. D., Piuz I., Hezareh M., Schlegel W. The guanine-nucleotide-binding protein subunit G alpha i2 is involved in calcium activation of phospholipase A2. Effects of the dominant negative G alpha i2 mutant, [G203T]G alpha i2, on activation of phospholipase A2 in Chinese hamster ovary cells. Eur J Biochem. 1995 May 15;230(1):164–169. doi: 10.1111/j.1432-1033.1995.tb20547.x. [DOI] [PubMed] [Google Scholar]
  27. Newburger P. E., Speier C., Borregaard N., Walsh C. E., Whitin J. C., Simons E. R. Development of the superoxide-generating system during differentiation of the HL-60 human promyelocytic leukemia cell line. J Biol Chem. 1984 Mar 25;259(6):3771–3776. [PubMed] [Google Scholar]
  28. Ohno Y., Seligmann B. E., Gallin J. I. Cytochrome b translocation to human neutrophil plasma membranes and superoxide release. Differential effects of N-formylmethionylleucylphenylalanine, phorbol myristate acetate, and A23187. J Biol Chem. 1985 Feb 25;260(4):2409–2414. [PubMed] [Google Scholar]
  29. Okajima F., Ui M. ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachidonate release in neutrophils. A possible role of the toxin substrate in Ca2+-mobilizing biosignaling. J Biol Chem. 1984 Nov 25;259(22):13863–13871. [PubMed] [Google Scholar]
  30. Pozzan T., Lew D. P., Wollheim C. B., Tsien R. Y. Is cytosolic ionized calcium regulating neutrophil activation? Science. 1983 Sep 30;221(4618):1413–1415. doi: 10.1126/science.6310757. [DOI] [PubMed] [Google Scholar]
  31. Prossnitz E. R., Kim C. M., Benovic J. L., Ye R. D. Phosphorylation of the N-formyl peptide receptor carboxyl terminus by the G protein-coupled receptor kinase, GRK2. J Biol Chem. 1995 Jan 20;270(3):1130–1137. doi: 10.1074/jbc.270.3.1130. [DOI] [PubMed] [Google Scholar]
  32. Richardson A., Taylor C. W. Effects of Ca2+ chelators on purified inositol 1,4,5-trisphosphate (InsP3) receptors and InsP3-stimulated Ca2+ mobilization. J Biol Chem. 1993 Jun 5;268(16):11528–11533. [PubMed] [Google Scholar]
  33. Schmidt H. H., Seifert R., Böhme E. Formation and release of nitric oxide from human neutrophils and HL-60 cells induced by a chemotactic peptide, platelet activating factor and leukotriene B4. FEBS Lett. 1989 Feb 27;244(2):357–360. doi: 10.1016/0014-5793(89)80562-9. [DOI] [PubMed] [Google Scholar]
  34. Simchowitz L., Foy M. A., Cragoe E. J., Jr A role for Na+/Ca2+ exchange in the generation of superoxide radicals by human neutrophils. J Biol Chem. 1990 Aug 15;265(23):13449–13456. [PubMed] [Google Scholar]
  35. Suchard S. J., Boxer L. A. Exocytosis of a subpopulation of specific granules coincides with H2O2 production in adherent human neutrophils. J Immunol. 1994 Jan 1;152(1):290–300. [PubMed] [Google Scholar]
  36. Sullivan G. W., Carper H. T., Novick W. J., Jr, Mandell G. L. Inhibition of the inflammatory action of interleukin-1 and tumor necrosis factor (alpha) on neutrophil function by pentoxifylline. Infect Immun. 1988 Jul;56(7):1722–1729. doi: 10.1128/iai.56.7.1722-1729.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thelen M., Dewald B., Baggiolini M. Neutrophil signal transduction and activation of the respiratory burst. Physiol Rev. 1993 Oct;73(4):797–821. doi: 10.1152/physrev.1993.73.4.797. [DOI] [PubMed] [Google Scholar]
  38. Traynor-Kaplan A. E., Thompson B. L., Harris A. L., Taylor P., Omann G. M., Sklar L. A. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils. J Biol Chem. 1989 Sep 15;264(26):15668–15673. [PubMed] [Google Scholar]
  39. Wymann M. P., von Tscharner V., Deranleau D. A., Baggiolini M. Chemiluminescence detection of H2O2 produced by human neutrophils during the respiratory burst. Anal Biochem. 1987 Sep;165(2):371–378. doi: 10.1016/0003-2697(87)90284-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES