Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Mar 15;322(Pt 3):785–792. doi: 10.1042/bj3220785

Cytoplasmic Ca2+ signalling and reduction of mitochondrial pyridine nucleotides in adrenal glomerulosa cells in response to K+, angiotensin II and vasopressin.

T Rohács 1, G Nagy 1, A Spät 1
PMCID: PMC1218256  PMID: 9148750

Abstract

We have examined the mitochondrial formation of NAD(P)H in rat adrenal glomerulosa cells. A short-term elevation of the K+ concentration from 3.6 to 8.4 mM induced a reversible increase in the formation of reduced pyridine nucleotides. Potassium applied after the addition of rotenone had no further effect, confirming that the redox signal was of mitochondrial origin. Inhibition of aldosterone synthesis by aminoglutethimide in K+-stimulated cells decreased the rate of decay of the NAD(P)H signal upon the termination of stimulation, indicating that the NADPH formed was consumed in aldosterone synthesis. When the NAD(P)H signal was measured simultaneously with the cytoplasmic free Ca2+ concentration ([Ca2+]i), elevation of the K+ concentration to 6.6 or 8.4 mM induced parallel increases in [Ca2+]i and NAD(P)H formation. The rates of increase and decrease of NAD(P)H were lower than for [Ca2+]i, confirming that the redox signal was secondary to the Ca2+ signal. Angiotensin II (100 pM-1 nM) induced an oscillatory NAD(P)H signal which usually returned to a lower baseline concentration, while a sustained signal with superimposed oscillations was observed at higher concentrations. Simultaneous measurements showed that NAD(P)H levels followed the [Ca2+]i pattern evoked by angiotensin II. Vasopressin (100 nM) also induced parallel oscillations of [Ca2+]i and NAD(P)H. A sustained rise in the extramitochondrial Ca2+ concentration to 1 microM induced a sustained elevation of the intramitochondrial Ca2+ concentration in permeabilized cells, as measured with rhod-2. A sustained rise in [Ca2+]i evoked by long-term stimulation with 8.4 mM K+ or 2.5 nM angiotensin II resulted in sustained NAD(P)H production. These Ca2+-dependent changes in the mitochondrial redox state support the biological response, i.e. aldosterone secretion by glomerulosa cells.

Full Text

The Full Text of this article is available as a PDF (671.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balla T., Enyedi P., Spät A., Antoni F. A. Pressor-type vasopressin receptors in the adrenal cortex: properties of binding, effects on phosphoinositide metabolism and aldosterone secretion. Endocrinology. 1985 Jul;117(1):421–423. doi: 10.1210/endo-117-1-421. [DOI] [PubMed] [Google Scholar]
  2. Barrett P. Q., Ertel E. A., Smith M. M., Nee J. J., Cohen C. J. Voltage-gated calcium currents have two opposing effects on the secretion of aldosterone. Am J Physiol. 1995 Apr;268(4 Pt 1):C985–C992. doi: 10.1152/ajpcell.1995.268.4.C985. [DOI] [PubMed] [Google Scholar]
  3. Benelli C., Michel O., Michel R. Effect of thyroidectomy on the rat adrenal cortex enzyme activities involved in corticosterone and aldosterone biosynthesis. J Steroid Biochem. 1982 Jun;16(6):755–761. doi: 10.1016/0022-4731(82)90032-2. [DOI] [PubMed] [Google Scholar]
  4. Cohen C. J., McCarthy R. T., Barrett P. Q., Rasmussen H. Ca channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca channel current. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2412–2416. doi: 10.1073/pnas.85.7.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Denton R. M., McCormack J. G. Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annu Rev Physiol. 1990;52:451–466. doi: 10.1146/annurev.ph.52.030190.002315. [DOI] [PubMed] [Google Scholar]
  6. Durroux T., Gallo-Payet N., Payet M. D. Three components of the calcium current in cultured glomerulosa cells from rat adrenal gland. J Physiol. 1988 Oct;404:713–729. doi: 10.1113/jphysiol.1988.sp017315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Enyedi P., Balla T., Antoni F. A., Spät A. Effect of angiotensin II and arginine vasopressin on aldosterone production and phosphoinositide turnover in rat adrenal glomerulosa cells: a comparative study. J Mol Endocrinol. 1988 Sep;1(2):117–124. doi: 10.1677/jme.0.0010117. [DOI] [PubMed] [Google Scholar]
  8. Enyedi P., Szabó B., Spät A. Reduced responsiveness of glomerulosa cells after prolonged stimulation with angiotensin II. Am J Physiol. 1985 Feb;248(2 Pt 1):E209–E214. doi: 10.1152/ajpendo.1985.248.2.E209. [DOI] [PubMed] [Google Scholar]
  9. Gallo-Payet N., Guillon G., Balestre M. N., Jard S. Vasopressin induces breakdown of membrane phosphoinositides in adrenal glomerulosa and fasciculata cells. Endocrinology. 1986 Sep;119(3):1042–1047. doi: 10.1210/endo-119-3-1042. [DOI] [PubMed] [Google Scholar]
  10. Ganguly A., Davis J. S. Role of calcium and other mediators in aldosterone secretion from the adrenal glomerulosa cells. Pharmacol Rev. 1994 Dec;46(4):417–447. [PubMed] [Google Scholar]
  11. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  12. Hajnóczky G., Robb-Gaspers L. D., Seitz M. B., Thomas A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell. 1995 Aug 11;82(3):415–424. doi: 10.1016/0092-8674(95)90430-1. [DOI] [PubMed] [Google Scholar]
  13. Hall P. F. A possible role for transhydrogenation in side-chain cleavage of cholesterol. Biochemistry. 1972 Jul 18;11(15):2891–2897. doi: 10.1021/bi00765a023. [DOI] [PubMed] [Google Scholar]
  14. Kowluru R., Yamazaki T., McNamara B. C., Jefcoate C. R. Metabolism of exogenous cholesterol by rat adrenal mitochondria is stimulated equally by physiological levels of free Ca2+ and by GTP. Mol Cell Endocrinol. 1995 Feb;107(2):181–188. doi: 10.1016/0303-7207(94)03441-u. [DOI] [PubMed] [Google Scholar]
  15. Lawrie A. M., Rizzuto R., Pozzan T., Simpson A. W. A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J Biol Chem. 1996 May 3;271(18):10753–10759. doi: 10.1074/jbc.271.18.10753. [DOI] [PubMed] [Google Scholar]
  16. Lukács G. L., Kapus A. Measurement of the matrix free Ca2+ concentration in heart mitochondria by entrapped fura-2 and quin2. Biochem J. 1987 Dec 1;248(2):609–613. doi: 10.1042/bj2480609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McCormack J. G., Halestrap A. P., Denton R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990 Apr;70(2):391–425. doi: 10.1152/physrev.1990.70.2.391. [DOI] [PubMed] [Google Scholar]
  18. Pralong W. F., Hunyady L., Várnai P., Wollheim C. B., Spät A. Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):132–136. doi: 10.1073/pnas.89.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pralong W. F., Spät A., Wollheim C. B. Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem. 1994 Nov 4;269(44):27310–27314. [PubMed] [Google Scholar]
  20. Prentki M., Glennon M. C., Thomas A. P., Morris R. L., Matschinsky F. M., Corkey B. E. Cell-specific patterns of oscillating free Ca2+ in carbamylcholine-stimulated insulinoma cells. J Biol Chem. 1988 Aug 15;263(23):11044–11047. [PubMed] [Google Scholar]
  21. Python C. P., Laban O. P., Rossier M. F., Vallotton M. B., Capponi A. M. The site of action of Ca2+ in the activation of steroidogenesis: studies in Ca(2+)-clamped bovine adrenal zona-glomerulosa cells. Biochem J. 1995 Jan 15;305(Pt 2):569–576. doi: 10.1042/bj3050569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Quinn S. J., Enyedi P., Tillotson D. L., Williams G. H. Kinetics of cytosolic calcium and aldosterone responses in rat adrenal glomerulosa cells. Endocrinology. 1991 Nov;129(5):2431–2441. doi: 10.1210/endo-129-5-2431. [DOI] [PubMed] [Google Scholar]
  23. Quinn S. J., Williams G. H., Tillotson D. L. Calcium oscillations in single adrenal glomerulosa cells stimulated by angiotensin II. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5754–5758. doi: 10.1073/pnas.85.15.5754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Redmann A., Möbius K., Hiller H. H., Oelkers W., Bähr V. Ascorbate depletion prevents aldosterone stimulation by sodium deficiency in the guinea pig. Eur J Endocrinol. 1995 Oct;133(4):499–506. doi: 10.1530/eje.0.1330499. [DOI] [PubMed] [Google Scholar]
  25. Rizzuto R., Brini M., Murgia M., Pozzan T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 1993 Oct 29;262(5134):744–747. doi: 10.1126/science.8235595. [DOI] [PubMed] [Google Scholar]
  26. Rizzuto R., Simpson A. W., Brini M., Pozzan T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature. 1992 Jul 23;358(6384):325–327. doi: 10.1038/358325a0. [DOI] [PubMed] [Google Scholar]
  27. Rutter G. A., Burnett P., Rizzuto R., Brini M., Murgia M., Pozzan T., Tavaré J. M., Denton R. M. Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5489–5494. doi: 10.1073/pnas.93.11.5489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rutter G. A., Theler J. M., Murgia M., Wollheim C. B., Pozzan T., Rizzuto R. Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in a pancreatic beta-cell line. Possible role in glucose and agonist-induced insulin secretion. J Biol Chem. 1993 Oct 25;268(30):22385–22390. [PubMed] [Google Scholar]
  29. Spät A., Balla I., Balla T., Cragoe E. J., Jr, Hajnóczky G., Hunyady L. Angiotensin II and potassium activate different calcium entry mechanisms in rat adrenal glomerulosa cells. J Endocrinol. 1989 Jul;122(1):361–370. doi: 10.1677/joe.0.1220361. [DOI] [PubMed] [Google Scholar]
  30. Spät A., Enyedi P., Hajnóczky G., Hunyady L. Generation and role of calcium signal in adrenal glomerulosa cells. Exp Physiol. 1991 Nov;76(6):859–885. doi: 10.1113/expphysiol.1991.sp003550. [DOI] [PubMed] [Google Scholar]
  31. Várnai P., Osipenko O. N., Vizi E. S., Spät A. Activation of calcium current in voltage-clamped rat glomerulosa cells by potassium ions. J Physiol. 1995 Feb 15;483(Pt 1):67–78. doi: 10.1113/jphysiol.1995.sp020568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Xu T. S., Bowman E. P., Glass D. B., Lambeth J. D. Stimulation of adrenal mitochondrial cholesterol side-chain cleavage by GTP, steroidogenesis activator polypeptide (SAP), and sterol carrier protein2. GTP and SAP act synergistically. J Biol Chem. 1991 Apr 15;266(11):6801–6807. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES