Abstract
To investigate structure-function relationships in plant chitinases, we have developed a heterologous expression system for the 26 kDa endochitinase from Hordeum vulgare L. (barley). Escherichia coli cells harbouring the gene in a T7 RNA polymerase-based expression vector synthesized completely insoluble recombinant protein under standard induction conditions at 37 degrees C. However, a concentration of soluble recombinant protein of approx. 15 mg/l was achieved by inducing bacteria at low temperature (15 degrees C). Recombinant endochitinase was purified to homogeneity and shown to be structurally and functionally identical to the seed protein. An average of three disulphide bonds are present in the recombinant enzyme, consistent with the number found in the natural form. The seed and recombinant proteins showed the same specific activity towards a high-molecular-mass substrate and exhibited similar anti-fungal activity towards Tricoderma reesei. Site-directed mutagenesis was used to replace residues that are likely to be involved in the catalytic event, based on structural similarities with lysozyme and on sequence alignments with related chitinases. The Glu67-->Gln mutation resulted in a protein with undetectable activity, while the Glu89-->Gln mutation yielded an enzyme with 0. 25% of wild-type specific activity. This suggests that two acidic residues are essential for catalytic activity, similar to the situation with many other glycosyl hydrolases. Examination of conserved residues stretching into the proposed substrate binding cleft suggests that Asn124 also plays an important functional role.
Full Text
The Full Text of this article is available as a PDF (341.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armand S., Tomita H., Heyraud A., Gey C., Watanabe T., Henrissat B. Stereochemical course of the hydrolysis reaction catalyzed by chitinases A1 and D from Bacillus circulans WL-12. FEBS Lett. 1994 Apr 25;343(2):177–180. doi: 10.1016/0014-5793(94)80314-5. [DOI] [PubMed] [Google Scholar]
- Banerjee S. K., Holler E., Hess G. P., Rupley J. A. Reaction of N-acetylglucosamine oligosaccharides with lysozyme. Temperature, pH, and solvent deuterium isotope effects; equilbrium, steady state, and pre-steady state measurements*. J Biol Chem. 1975 Jun 10;250(11):4355–4367. [PubMed] [Google Scholar]
- Barkholt V., Jensen A. L. Amino acid analysis: determination of cysteine plus half-cystine in proteins after hydrochloric acid hydrolysis with a disulfide compound as additive. Anal Biochem. 1989 Mar;177(2):318–322. doi: 10.1016/0003-2697(89)90059-6. [DOI] [PubMed] [Google Scholar]
- Brogue K., Chet I., Holliday M., Cressman R., Biddle P., Knowlton S., Mauvais C. J., Broglie R. Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani. Science. 1991 Nov 22;254(5035):1194–1197. doi: 10.1126/science.254.5035.1194. [DOI] [PubMed] [Google Scholar]
- Collinge D. B., Kragh K. M., Mikkelsen J. D., Nielsen K. K., Rasmussen U., Vad K. Plant chitinases. Plant J. 1993 Jan;3(1):31–40. doi: 10.1046/j.1365-313x.1993.t01-1-00999.x. [DOI] [PubMed] [Google Scholar]
- Dahlquist F. W., Borders C. L., Jr, Jacobson G., Raftery M. A. The stereospecificity of human, hen, and papaya lysozymes. Biochemistry. 1969 Feb;8(2):694–700. doi: 10.1021/bi00830a035. [DOI] [PubMed] [Google Scholar]
- Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
- Derman A. I., Prinz W. A., Belin D., Beckwith J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science. 1993 Dec 10;262(5140):1744–1747. doi: 10.1126/science.8259521. [DOI] [PubMed] [Google Scholar]
- Frandsen G., Müller-Uri F., Nielsen M., Mundy J., Skriver K. Novel plant Ca(2+)-binding protein expressed in response to abscisic acid and osmotic stress. J Biol Chem. 1996 Jan 5;271(1):343–348. doi: 10.1074/jbc.271.1.343. [DOI] [PubMed] [Google Scholar]
- Fukamizo T., Honda Y., Goto S., Boucher I., Brzezinski R. Reaction mechanism of chitosanase from Streptomyces sp. N174. Biochem J. 1995 Oct 15;311(Pt 2):377–383. doi: 10.1042/bj3110377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hart P. J., Monzingo A. F., Ready M. P., Ernst S. R., Robertus J. D. Crystal structure of an endochitinase from Hordeum vulgare L. seeds. J Mol Biol. 1993 Jan 5;229(1):189–193. doi: 10.1006/jmbi.1993.1017. [DOI] [PubMed] [Google Scholar]
- Hart P. J., Pfluger H. D., Monzingo A. F., Hollis T., Robertus J. D. The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8 A resolution. J Mol Biol. 1995 Apr 28;248(2):402–413. [PubMed] [Google Scholar]
- Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
- Hockney R. C. Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 1994 Nov;12(11):456–463. doi: 10.1016/0167-7799(94)90021-3. [DOI] [PubMed] [Google Scholar]
- Holm L., Sander C. Structural similarity of plant chitinase and lysozymes from animals and phage. An evolutionary connection. FEBS Lett. 1994 Feb 28;340(1-2):129–132. doi: 10.1016/0014-5793(94)80187-8. [DOI] [PubMed] [Google Scholar]
- Iseli B., Armand S., Boller T., Neuhaus J. M., Henrissat B. Plant chitinases use two different hydrolytic mechanisms. FEBS Lett. 1996 Mar 11;382(1-2):186–188. doi: 10.1016/0014-5793(96)00174-3. [DOI] [PubMed] [Google Scholar]
- Iseli B., Boller T., Neuhaus J. M. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol. 1993 Sep;103(1):221–226. doi: 10.1104/pp.103.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly J. A., Sielecki A. R., Sykes B. D., James M. N., Phillips D. C. X-ray crystallography of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme. Nature. 1979 Dec 20;282(5741):875–878. doi: 10.1038/282875a0. [DOI] [PubMed] [Google Scholar]
- Kuroki R., Weaver L. H., Matthews B. W. Structure-based design of a lysozyme with altered catalytic activity. Nat Struct Biol. 1995 Nov;2(11):1007–1011. doi: 10.1038/nsb1195-1007. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leah R., Skriver K., Knudsen S., Ruud-Hansen J., Raikhel N. V., Mundy J. Identification of an enhancer/silencer sequence directing the aleurone-specific expression of a barley chitinase gene. Plant J. 1994 Oct;6(4):579–589. doi: 10.1046/j.1365-313x.1994.6040579.x. [DOI] [PubMed] [Google Scholar]
- Leah R., Tommerup H., Svendsen I., Mundy J. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem. 1991 Jan 25;266(3):1564–1573. [PubMed] [Google Scholar]
- Marcotte E. M., Monzingo A. F., Ernst S. R., Brzezinski R., Robertus J. D. X-ray structure of an anti-fungal chitosanase from streptomyces N174. Nat Struct Biol. 1996 Feb;3(2):155–162. doi: 10.1038/nsb0296-155. [DOI] [PubMed] [Google Scholar]
- Matsumura I., Kirsch J. F. Synergistic contributions of asparagine 46 and aspartate 52 to the catalytic mechanism of chicken egg white lysozyme. Biochemistry. 1996 Feb 13;35(6):1890–1896. doi: 10.1021/bi951672i. [DOI] [PubMed] [Google Scholar]
- Mauch F., Mauch-Mani B., Boller T. Antifungal Hydrolases in Pea Tissue : II. Inhibition of Fungal Growth by Combinations of Chitinase and beta-1,3-Glucanase. Plant Physiol. 1988 Nov;88(3):936–942. doi: 10.1104/pp.88.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarter J. D., Withers S. G. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol. 1994 Dec;4(6):885–892. doi: 10.1016/0959-440x(94)90271-2. [DOI] [PubMed] [Google Scholar]
- Molano J., Polacheck I., Duran A., Cabib E. An endochitinase from wheat germ. Activity on nascent and preformed chitin. J Biol Chem. 1979 Jun 10;254(11):4901–4907. [PubMed] [Google Scholar]
- Monzingo A. F., Marcotte E. M., Hart P. J., Robertus J. D. Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Nat Struct Biol. 1996 Feb;3(2):133–140. doi: 10.1038/nsb0296-133. [DOI] [PubMed] [Google Scholar]
- Perrakis A., Tews I., Dauter Z., Oppenheim A. B., Chet I., Wilson K. S., Vorgias C. E. Crystal structure of a bacterial chitinase at 2.3 A resolution. Structure. 1994 Dec 15;2(12):1169–1180. doi: 10.1016/s0969-2126(94)00119-7. [DOI] [PubMed] [Google Scholar]
- Piszkiewicz D., Bruice T. C. Glycoside hydrolysis. II. Intramolecular carboxyl and acetamido group catalysis in beta-glycoside hydrolysis. J Am Chem Soc. 1968 Apr 10;90(8):2156–2163. doi: 10.1021/ja01010a038. [DOI] [PubMed] [Google Scholar]
- Ploug M., Jensen A. L., Barkholt V. Determination of amino acid compositions and NH2-terminal sequences of peptides electroblotted onto PVDF membranes from tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis: application to peptide mapping of human complement component C3. Anal Biochem. 1989 Aug 15;181(1):33–39. doi: 10.1016/0003-2697(89)90390-4. [DOI] [PubMed] [Google Scholar]
- Ring M., Bader D. E., Huber R. E. Site-directed mutagenesis of beta-galactosidase (E. coli) reveals that tyr-503 is essential for activity. Biochem Biophys Res Commun. 1988 May 16;152(3):1050–1055. doi: 10.1016/s0006-291x(88)80390-5. [DOI] [PubMed] [Google Scholar]
- Roberts W. K., Selitrennikoff C. P. Isolation and partial characterization of two antifungal proteins from barley. Biochim Biophys Acta. 1986 Feb 19;880(2-3):161–170. doi: 10.1016/0304-4165(86)90076-0. [DOI] [PubMed] [Google Scholar]
- Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
- Terwisscha van Scheltinga A. C., Armand S., Kalk K. H., Isogai A., Henrissat B., Dijkstra B. W. Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry. 1995 Dec 5;34(48):15619–15623. doi: 10.1021/bi00048a003. [DOI] [PubMed] [Google Scholar]
- Terwisscha van Scheltinga A. C., Kalk K. H., Beintema J. J., Dijkstra B. W. Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure. 1994 Dec 15;2(12):1181–1189. doi: 10.1016/s0969-2126(94)00120-0. [DOI] [PubMed] [Google Scholar]
- Tews I., Perrakis A., Oppenheim A., Dauter Z., Wilson K. S., Vorgias C. E. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nat Struct Biol. 1996 Jul;3(7):638–648. doi: 10.1038/nsb0796-638. [DOI] [PubMed] [Google Scholar]
- Thunnissen A. M., Dijkstra A. J., Kalk K. H., Rozeboom H. J., Engel H., Keck W., Dijkstra B. W. Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography. Nature. 1994 Feb 24;367(6465):750–753. doi: 10.1038/367750a0. [DOI] [PubMed] [Google Scholar]
- Verburg J. G., Rangwala S. H., Samac D. A., Luckow V. A., Huynh Q. K. Examination of the role of tyrosine-174 in the catalytic mechanism of the Arabidopsis thaliana chitinase: comparison of variant chitinases generated by site-directed mutagenesis and expressed in insect cells using baculovirus vectors. Arch Biochem Biophys. 1993 Jan;300(1):223–230. doi: 10.1006/abbi.1993.1031. [DOI] [PubMed] [Google Scholar]
- Verburg J. G., Smith C. E., Lisek C. A., Huynh Q. K. Identification of an essential tyrosine residue in the catalytic site of a chitinase isolated from Zea mays that is selectively modified during inactivation with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. J Biol Chem. 1992 Feb 25;267(6):3886–3893. [PubMed] [Google Scholar]
- Weaver L. H., Grütter M. G., Matthews B. W. The refined structures of goose lysozyme and its complex with a bound trisaccharide show that the "goose-type" lysozymes lack a catalytic aspartate residue. J Mol Biol. 1995 Jan 6;245(1):54–68. doi: 10.1016/s0022-2836(95)80038-7. [DOI] [PubMed] [Google Scholar]
- Wright C. S. Crystallographic elucidation of the saccharide binding mode in wheat germ agglutinin and its biological significance. J Mol Biol. 1980 Aug 15;141(3):267–291. doi: 10.1016/0022-2836(80)90181-3. [DOI] [PubMed] [Google Scholar]
- Yasukawa T., Kanei-Ishii C., Maekawa T., Fujimoto J., Yamamoto T., Ishii S. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J Biol Chem. 1995 Oct 27;270(43):25328–25331. doi: 10.1074/jbc.270.43.25328. [DOI] [PubMed] [Google Scholar]