Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Mar 15;322(Pt 3):867–871. doi: 10.1042/bj3220867

Structure and organization of amplicons containing the E4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer).

L M Field 1, A L Devonshire 1
PMCID: PMC1218268  PMID: 9148762

Abstract

Insecticide resistance in the aphid Myzus persicae results primarily from the amplification of genes encoding the insecticide-detoxifying esterase, E4. Here we report the analysis of flanking DNA co-amplified with the E4 gene. The 5' end of this gene has an untranslated leader sequence interspersed by two introns, and the promoter region lacks TATA and CAAT boxes. The DNA breakpoint involved in the generation of the amplification is just upstream (approx. 250 bp) of the putative E4 transcription start site; thus the E4 gene is very close to the 5' end of the approx. 24 kb amplicon. PCR primers specific to the 'novel joint' generated during the amplification have been used to show that a wide range of aphid clones have the same amplicons, arranged as a series of head-to-tail direct repeats. Long-distance mapping has revealed the structure of these repeats. This has important implications for understanding both the generation of the amplified genes and the origin and spread of insecticide resistance in M. persicae.

Full Text

The Full Text of this article is available as a PDF (338.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azou Y., Laval M. Sequence of the novel joints present in the amplified DNA of N-phosphonacetyl-L-aspartate resistant Drosophila cells: implication on the mechanisms of amplification in these cells. Biol Cell. 1993;77(2):155–164. doi: 10.1016/s0248-4900(05)80183-2. [DOI] [PubMed] [Google Scholar]
  2. Bird A. P. Gene number, noise reduction and biological complexity. Trends Genet. 1995 Mar;11(3):94–100. doi: 10.1016/S0168-9525(00)89009-5. [DOI] [PubMed] [Google Scholar]
  3. Brady J. P., Richmond R. C., Oakeshott J. G. Cloning of the esterase-5 locus from Drosophila pseudoobscura and comparison with its homologue in D. melanogaster. Mol Biol Evol. 1990 Nov;7(6):525–546. doi: 10.1093/oxfordjournals.molbev.a040624. [DOI] [PubMed] [Google Scholar]
  4. Böhm S. K., Gum J. R., Jr, Erickson R. H., Hicks J. W., Kim Y. S. Human dipeptidyl peptidase IV gene promoter: tissue-specific regulation from a TATA-less GC-rich sequence characteristic of a housekeeping gene promoter. Biochem J. 1995 Nov 1;311(Pt 3):835–843. doi: 10.1042/bj3110835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cherbas L., Cherbas P. The arthropod initiator: the capsite consensus plays an important role in transcription. Insect Biochem Mol Biol. 1993 Jan;23(1):81–90. doi: 10.1016/0965-1748(93)90085-7. [DOI] [PubMed] [Google Scholar]
  6. Devonshire A. L., Field L. M. Gene amplification and insecticide resistance. Annu Rev Entomol. 1991;36:1–23. doi: 10.1146/annurev.en.36.010191.000245. [DOI] [PubMed] [Google Scholar]
  7. Field L. M., Crick S. E., Devonshire A. L. Polymerase chain reaction-based identification of insecticide resistance genes and DNA methylation in the aphid Myzus persicae (Sulzer). Insect Mol Biol. 1996 Aug;5(3):197–202. doi: 10.1111/j.1365-2583.1996.tb00054.x. [DOI] [PubMed] [Google Scholar]
  8. Field L. M., Devonshire A. L., Tyler-Smith C. Analysis of amplicons containing the esterase genes responsible for insecticide resistance in the peach-potato aphid Myzus persicae (Sulzer). Biochem J. 1996 Jan 15;313(Pt 2):543–547. doi: 10.1042/bj3130543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Field L. M., Javed N., Stribley M. F., Devonshire A. L. The peach-potato aphid Myzus persicae and the tobacco aphid Myzus nicotianae have the same esterase-based mechanisms of insecticide resistance. Insect Mol Biol. 1994 Aug;3(3):143–148. doi: 10.1111/j.1365-2583.1994.tb00161.x. [DOI] [PubMed] [Google Scholar]
  10. Field L. M., Williamson M. S., Moores G. D., Devonshire A. L. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Biochem J. 1993 Sep 1;294(Pt 2):569–574. doi: 10.1042/bj2940569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Karotam J., Delves A. C., Oakeshott J. G. Conservation and change in structural and 5' flanking sequences of esterase 6 in sibling Drosophila species. Genetica. 1993;88(1):11–28. doi: 10.1007/BF02424448. [DOI] [PubMed] [Google Scholar]
  12. Mouches C., Pauplin Y., Agarwal M., Lemieux L., Herzog M., Abadon M., Beyssat-Arnaouty V., Hyrien O., de Saint Vincent B. R., Georghiou G. P. Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2574–2578. doi: 10.1073/pnas.87.7.2574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nance E., Heyse D., Britton-Davidian J., Pasteur N. Chromosomal organization of the amplified esterase B1 gene in organophosphate-resistant Culex pipiens quinquefasciatus Say (Diptera, Culicidae). Genome. 1990 Feb;33(1):148–152. doi: 10.1139/g90-023. [DOI] [PubMed] [Google Scholar]
  14. Orr-Weaver T. L. Drosophila chorion genes: cracking the eggshell's secrets. Bioessays. 1991 Mar;13(3):97–105. doi: 10.1002/bies.950130302. [DOI] [PubMed] [Google Scholar]
  15. Raymond M., Callaghan A., Fort P., Pasteur N. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature. 1991 Mar 14;350(6314):151–153. doi: 10.1038/350151a0. [DOI] [PubMed] [Google Scholar]
  16. Schoenlein P. V. Role of gene amplification in drug resistance. Cancer Treat Res. 1994;73:167–200. doi: 10.1007/978-1-4615-2632-2_9. [DOI] [PubMed] [Google Scholar]
  17. Slabaugh M. B., Roseman N. A., Mathews C. K. Amplification of the ribonucleotide reductase small subunit gene: analysis of novel joints and the mechanism of gene duplication in vaccinia virus. Nucleic Acids Res. 1989 Sep 12;17(17):7073–7088. doi: 10.1093/nar/17.17.7073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith K. A., Gorman P. A., Stark M. B., Groves R. P., Stark G. R. Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian hamster cells. Cell. 1990 Dec 21;63(6):1219–1227. doi: 10.1016/0092-8674(90)90417-d. [DOI] [PubMed] [Google Scholar]
  19. Stark G. R. Regulation and mechanisms of mammalian gene amplification. Adv Cancer Res. 1993;61:87–113. doi: 10.1016/s0065-230x(08)60956-2. [DOI] [PubMed] [Google Scholar]
  20. Triglia T., Foote S. J., Kemp D. J., Cowman A. F. Amplification of the multidrug resistance gene pfmdr1 in Plasmodium falciparum has arisen as multiple independent events. Mol Cell Biol. 1991 Oct;11(10):5244–5250. doi: 10.1128/mcb.11.10.5244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Triglia T., Peterson M. G., Kemp D. J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res. 1988 Aug 25;16(16):8186–8186. doi: 10.1093/nar/16.16.8186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wilson T. G. Transposable elements as initiators of insecticide resistance. J Econ Entomol. 1993 Jun;86(3):645–651. doi: 10.1093/jee/86.3.645. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES