Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Apr 1;323(Pt 1):167–171. doi: 10.1042/bj3230167

Design of kallidin-releasing tissue kallikrein inhibitors based on the specificities of the enzyme's binding subsites.

F C Portaro 1, M H Cezari 1, M A Juliano 1, L Juliano 1, A R Walmsley 1, E S Prado 1
PMCID: PMC1218290  PMID: 9173877

Abstract

The tissue kallikrein inhibitors reported in the present work were derived by selectively replacing residues in Nalpha-substituted arginine- or phenylalanine-pNA (where pNA is p-nitroanilide), and in peptide substrates for these enzymes. Phenylacetyl-Arg-pNA was found to be an efficient inhibitor of human tissue kallikrein (Ki 0.4 microM) and was neither a substrate nor an inhibitor of plasma kallikrein. The peptide inhibitors having phenylalanine as the P1 residue behaved as specific inhibitors for kallidin-releasing tissue kallikreins, while plasma kallikrein showed high affinity for inhibitors containing (p-nitro)phenylalanine at the same position. The Ki value of the most potent inhibitor developed, Abz-Phe-Arg-Arg-Pro-Arg-EDDnp [where Abz is o-aminobenzoyl and EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine], was 0.08 microM for human tissue kallikrein. Progress curve analyses of the inhibition of human tissue kallikrein by benzoyl-Arg-pNA and phenylacetyl-Phe-Ser-Arg-EDDnp indicated a single-step mechanism for reversible formation of the enzyme-inhibitor complex.

Full Text

The Full Text of this article is available as a PDF (238.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araújo-Viel M. S., Juliano M. A., Oliveira L., Prado E. S. Horse urinary kallikrein, II. Effect of subsite interactions on its catalytic activity. Biol Chem Hoppe Seyler. 1988 May;369(5):397–401. doi: 10.1515/bchm3.1988.369.1.397. [DOI] [PubMed] [Google Scholar]
  2. Basso L. A., Engel P. C., Walmsley A. R. The mechanism of substrate and coenzyme binding to clostridial glutamate dehydrogenase during reductive amination. Eur J Biochem. 1995 Dec 1;234(2):603–615. doi: 10.1111/j.1432-1033.1995.603_b.x. [DOI] [PubMed] [Google Scholar]
  3. Bhoola K. D., Figueroa C. D., Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev. 1992 Mar;44(1):1–80. [PubMed] [Google Scholar]
  4. Bieth J. G. Theoretical and practical aspects of proteinase inhibition kinetics. Methods Enzymol. 1995;248:59–84. doi: 10.1016/0076-6879(95)48007-2. [DOI] [PubMed] [Google Scholar]
  5. Bode W., Chen Z., Bartels K., Kutzbach C., Schmidt-Kastner G., Bartunik H. Refined 2 A X-ray crystal structure of porcine pancreatic kallikrein A, a specific trypsin-like serine proteinase. Crystallization, structure determination, crystallographic refinement, structure and its comparison with bovine trypsin. J Mol Biol. 1983 Feb 25;164(2):237–282. doi: 10.1016/0022-2836(83)90077-3. [DOI] [PubMed] [Google Scholar]
  6. Chagas J. R., Hirata I. Y., Juliano M. A., Xiong W., Wang C., Chao J., Juliano L., Prado E. S. Substrate specificities of tissue kallikrein and T-kininogenase: their possible role in kininogen processing. Biochemistry. 1992 Jun 2;31(21):4969–4974. doi: 10.1021/bi00136a008. [DOI] [PubMed] [Google Scholar]
  7. Chagas J. R., Juliano L., Prado E. S. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Anal Biochem. 1991 Feb 1;192(2):419–425. doi: 10.1016/0003-2697(91)90558-b. [DOI] [PubMed] [Google Scholar]
  8. Chagas J. R., Portaro F. C., Hirata I. Y., Almeida P. C., Juliano M. A., Juliano L., Prado E. S. Determinants of the unusual cleavage specificity of lysyl-bradykinin-releasing kallikreins. Biochem J. 1995 Feb 15;306(Pt 1):63–69. doi: 10.1042/bj3060063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Del Nery E., Chagas J. R., Juliano M. A., Prado E. S., Juliano L. Evaluation of the extent of the binding site in human tissue kallikrein by synthetic substrates with sequences of human kininogen fragments. Biochem J. 1995 Nov 15;312(Pt 1):233–238. doi: 10.1042/bj3120233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fiedler F. Effects of secondary interactions on the kinetics of peptide and peptide ester hydrolysis by tissue kallikrein and trypsin. Eur J Biochem. 1987 Mar 2;163(2):303–312. doi: 10.1111/j.1432-1033.1987.tb10801.x. [DOI] [PubMed] [Google Scholar]
  12. Fiedler F., Hinz H., Lottspeich F. Individual reaction steps in the release of kallidin from kininogen by tissue kallikrein. Adv Exp Med Biol. 1986;198(Pt A):283–289. doi: 10.1007/978-1-4684-5143-6_39. [DOI] [PubMed] [Google Scholar]
  13. Juliano M. A., Juliano L. Synthesis and kinetic parameters of hydrolysis by trypsin of some acyl-arginyl-p-nitroanilides and peptides containing arginyl-p-nitroanilide. Braz J Med Biol Res. 1985;18(4):435–445. [PubMed] [Google Scholar]
  14. Kato H., Enjyoji K., Miyata T., Hayashi I., Oh-ishi S., Iwanaga S. Demonstration of arginyl-bradykinin moiety in rat HMW kininogen: direct evidence for liberation of bradykinin by rat glandular kallikreins. Biochem Biophys Res Commun. 1985 Feb 28;127(1):289–295. doi: 10.1016/s0006-291x(85)80157-1. [DOI] [PubMed] [Google Scholar]
  15. Kettner C., Shaw E. Inactivation of trypsin-like enzymes with peptides of arginine chloromethyl ketone. Methods Enzymol. 1981;80(Pt 100):826–842. doi: 10.1016/s0076-6879(81)80065-1. [DOI] [PubMed] [Google Scholar]
  16. MacDonald R. J., Margolius H. S., Erdös E. G. Molecular biology of tissue kallikrein. Biochem J. 1988 Jul 15;253(2):313–321. doi: 10.1042/bj2530313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nicklin M. J., Barrett A. J. Inhibition of cysteine proteinases and dipeptidyl peptidase I by egg-white cystatin. Biochem J. 1984 Oct 1;223(1):245–253. doi: 10.1042/bj2230245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oliveira L., Araujo-Viel M. S., Juliano L., Prado E. S. Substrate activation of porcine pancreatic kallikrein by N alpha derivatives of arginine 4-nitroanilides. Biochemistry. 1987 Aug 11;26(16):5032–5035. doi: 10.1021/bi00390a022. [DOI] [PubMed] [Google Scholar]
  19. Prado E. S., Araújo-Viel M. S., Juliano M. A., Juliano L., Stella R. C., Sampaio C. A. Tetrapeptide substrates for the discrimination among kallikreins and other trypsin-like serine proteinases. Biol Chem Hoppe Seyler. 1986 Mar;367(3):199–205. doi: 10.1515/bchm3.1986.367.1.199. [DOI] [PubMed] [Google Scholar]
  20. Sampaio C. A., Sampaio M. U., Prado E. S. Active-site titration of horse urinary kallikrein. Hoppe Seylers Z Physiol Chem. 1984 Mar;365(3):297–302. doi: 10.1515/bchm2.1984.365.1.297. [DOI] [PubMed] [Google Scholar]
  21. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  22. Szelke M., Evans D. M., Jones D. M., Fawcett L., Ashworth D., Olsson H., Featherstone R. L., Church M. K. Synthetic inhibitors of tissue kallikrein: effects in vivo in a model of allergic inflammation. Braz J Med Biol Res. 1994 Aug;27(8):1943–1947. [PubMed] [Google Scholar]
  23. Teno N., Wanaka K., Okada Y., Tsuda Y., Okamoto U., Hijikata-Okunomiya A., Naito T., Okamoto S. Development of selective inhibitors against plasma kallikrein. Chem Pharm Bull (Tokyo) 1991 Nov;39(11):2930–2936. doi: 10.1248/cpb.39.2930. [DOI] [PubMed] [Google Scholar]
  24. Tschesche H., Mair G., Godec G. The primary structure of porcine glandular kallikreins. Adv Exp Med Biol. 1979;120A:245–260. doi: 10.1007/978-1-4757-0926-1_25. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES