Abstract
The intracellular compartmentation of biotin holocarboxylase synthetase has been investigated in pea (Pisum sativum) leaves, by isolation of organelles and fractionation of protoplasts. Enzyme activity was mainly located in cytosol (approx. 90% of total cellular activity). Significant activity was also identified in the soluble phase of both mitochondria and chloroplasts. Two enzyme forms were separated by anion-exchange chromatography. The major form was found to be specific for the cytosol compartment, whereas the minor form was present in mitochondria as well as in chloroplasts. We also report the isolation and DNA sequence of a cDNA encoding an Arabidopsis thaliana biotin holocarboxylase synthetase. This cDNA was isolated by functional complementation of a conditional lethal Escherichia coli birA (biotin ligase gene, which regulates biotin synthesis) mutant. This indicated that the recombinant plant protein was able to biotinylate specifically an essential apoprotein substrate in the bacterial host, that is a subunit of acetyl-CoA carboxylase called biotin carboxyl carrier protein. The full-length nucleotide sequence (1534 bp) encodes a protein of 367 amino acid residues with a molecular mass of 41172 Da and shows specific regions of similarity to other biotin holocarboxylase synthetase genes as isolated from bacteria and yeast, and with cDNA species from human. A sequence downstream of the first translation initiation site encodes a putative peptide structurally similar to organelle-targeting pre-sequences, suggesting a mitochondrial or chloroplastic localization for this isoform.
Full Text
The Full Text of this article is available as a PDF (780.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alban C., Baldet P., Axiotis S., Douce R. Purification and Characterization of 3-Methylcrotonyl-Coenzyme A Carboxylase from Higher Plant Mitochondria. Plant Physiol. 1993 Jul;102(3):957–965. doi: 10.1104/pp.102.3.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alban C., Baldet P., Douce R. Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochem J. 1994 Jun 1;300(Pt 2):557–565. doi: 10.1042/bj3000557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldet P., Alban C., Axiotis S., Douce R. Characterization of biotin and 3-methylcrotonyl-coenzyme a carboxylase in higher plant mitochondria. Plant Physiol. 1992 Jun;99(2):450–455. doi: 10.1104/pp.99.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldet P., Alban C., Axiotis S., Douce R. Localization of free and bound biotin in cells from green pea leaves. Arch Biochem Biophys. 1993 May 15;303(1):67–73. doi: 10.1006/abbi.1993.1256. [DOI] [PubMed] [Google Scholar]
- Barker D. F., Campbell A. M. Genetic and biochemical characterization of the birA gene and its product: evidence for a direct role of biotin holoenzyme synthetase in repression of the biotin operon in Escherichia coli. J Mol Biol. 1981 Mar 15;146(4):469–492. doi: 10.1016/0022-2836(81)90043-7. [DOI] [PubMed] [Google Scholar]
- Barker D. F., Campbell A. M. The birA gene of Escherichia coli encodes a biotin holoenzyme synthetase. J Mol Biol. 1981 Mar 15;146(4):451–467. doi: 10.1016/0022-2836(81)90042-5. [DOI] [PubMed] [Google Scholar]
- Bower S., Perkins J., Yocum R. R., Serror P., Sorokin A., Rahaim P., Howitt C. L., Prasad N., Ehrlich S. D., Pero J. Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. J Bacteriol. 1995 May;177(9):2572–2575. doi: 10.1128/jb.177.9.2572-2575.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Chang H. I., Cohen N. D. Regulation and intracellular localization of the biotin holocarboxylase synthetase of 3T3-L1 cells. Arch Biochem Biophys. 1983 Aug;225(1):237–247. doi: 10.1016/0003-9861(83)90026-7. [DOI] [PubMed] [Google Scholar]
- Chiba Y., Suzuki Y., Aoki Y., Ishida Y., Narisawa K. Purification and properties of bovine liver holocarboxylase synthetase. Arch Biochem Biophys. 1994 Aug 15;313(1):8–14. doi: 10.1006/abbi.1994.1351. [DOI] [PubMed] [Google Scholar]
- Choi J. K., Yu F., Wurtele E. S., Nikolau B. J. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of the chloroplastic acetyl-coenzyme A carboxylase. Plant Physiol. 1995 Oct;109(2):619–625. doi: 10.1104/pp.109.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cronan J. E., Jr The E. coli bio operon: transcriptional repression by an essential protein modification enzyme. Cell. 1989 Aug 11;58(3):427–429. doi: 10.1016/0092-8674(89)90421-2. [DOI] [PubMed] [Google Scholar]
- Cronan J. E., Jr, Wallace J. C. The gene encoding the biotin-apoprotein ligase of Saccharomyces cerevisiae. FEMS Microbiol Lett. 1995 Aug 1;130(2-3):221–229. doi: 10.1111/j.1574-6968.1995.tb07724.x. [DOI] [PubMed] [Google Scholar]
- Dakshinamurti K., Chauhan J. Biotin. Vitam Horm. 1989;45:337–384. doi: 10.1016/s0083-6729(08)60398-2. [DOI] [PubMed] [Google Scholar]
- Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egli M. A., Gengenbach B. G., Gronwald J. W., Somers D. A., Wyse D. L. Characterization of Maize Acetyl-Coenzyme A Carboxylase. Plant Physiol. 1993 Feb;101(2):499–506. doi: 10.1104/pp.101.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg M. A. Biotin: biogenesis, transport, and their regulation. Adv Enzymol Relat Areas Mol Biol. 1973;38:317–372. doi: 10.1002/9780470122839.ch7. [DOI] [PubMed] [Google Scholar]
- Eisenberg M. A., Prakash O., Hsiung S. C. Purification and properties of the biotin repressor. A bifunctional protein. J Biol Chem. 1982 Dec 25;257(24):15167–15173. [PubMed] [Google Scholar]
- Elledge S. J., Mulligan J. T., Ramer S. W., Spottswood M., Davis R. W. Lambda YES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1731–1735. doi: 10.1073/pnas.88.5.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gope M. L., Keinänen R. A., Kristo P. A., Conneely O. M., Beattie W. G., Zarucki-Schulz T., O'Malley B. W., Kulomaa M. S. Molecular cloning of the chicken avidin cDNA. Nucleic Acids Res. 1987 Apr 24;15(8):3595–3606. doi: 10.1093/nar/15.8.3595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins C. F., Hiles I. D., Salmond G. P., Gill D. R., Downie J. A., Evans I. J., Holland I. B., Gray L., Buckel S. D., Bell A. W. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature. 1986 Oct 2;323(6087):448–450. doi: 10.1038/323448a0. [DOI] [PubMed] [Google Scholar]
- Howard P. K., Shaw J., Otsuka A. J. Nucleotide sequence of the birA gene encoding the biotin operon repressor and biotin holoenzyme synthetase functions of Escherichia coli. Gene. 1985;35(3):321–331. doi: 10.1016/0378-1119(85)90011-3. [DOI] [PubMed] [Google Scholar]
- Joshi C. P. Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucleic Acids Res. 1987 Dec 10;15(23):9627–9640. doi: 10.1093/nar/15.23.9627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konishi T., Sasaki Y. Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3598–3601. doi: 10.1073/pnas.91.9.3598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- León-Del-Rio A., Leclerc D., Akerman B., Wakamatsu N., Gravel R. A. Isolation of a cDNA encoding human holocarboxylase synthetase by functional complementation of a biotin auxotroph of Escherichia coli. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4626–4630. doi: 10.1073/pnas.92.10.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mourioux G., Douce R. Slow Passive Diffusion of Orthophosphate between Intact Isolated Chloroplasts and Suspending Medium. Plant Physiol. 1981 Mar;67(3):470–473. doi: 10.1104/pp.67.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samols D., Thornton C. G., Murtif V. L., Kumar G. K., Haase F. C., Wood H. G. Evolutionary conservation among biotin enzymes. J Biol Chem. 1988 May 15;263(14):6461–6464. [PubMed] [Google Scholar]
- Shellhammer J., Meinke D. Arrested Embryos from the bio1 Auxotroph of Arabidopsis thaliana Contain Reduced Levels of Biotin. Plant Physiol. 1990 Jul;93(3):1162–1167. doi: 10.1104/pp.93.3.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki Y., Aoki Y., Ishida Y., Chiba Y., Iwamatsu A., Kishino T., Niikawa N., Matsubara Y., Narisawa K. Isolation and characterization of mutations in the human holocarboxylase synthetase cDNA. Nat Genet. 1994 Oct;8(2):122–128. doi: 10.1038/ng1094-122. [DOI] [PubMed] [Google Scholar]
- Tissot G., Job D., Douce R., Alban C. Protein biotinylation in higher plants: characterization of biotin holocarboxylase synthetase activity from pea (Pisum sativum) leaves. Biochem J. 1996 Mar 1;314(Pt 2):391–395. doi: 10.1042/bj3140391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson K. P., Shewchuk L. M., Brennan R. G., Otsuka A. J., Matthews B. W. Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9257–9261. doi: 10.1073/pnas.89.19.9257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia W. L., Zhang J., Ahmad F. Biotin holocarboxylase synthetase: purification from rat liver cytosol and some properties. Biochem Mol Biol Int. 1994 Sep;34(2):225–232. [PubMed] [Google Scholar]
- Xu X., Matsuno-Yagi A., Yagi T. DNA sequencing of the seven remaining structural genes of the gene cluster encoding the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans. Biochemistry. 1993 Jan 26;32(3):968–981. doi: 10.1021/bi00054a030. [DOI] [PubMed] [Google Scholar]