Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Apr 1;323(Pt 1):265–271. doi: 10.1042/bj3230265

The pro region is not required for the expression or intracellular routeing of carboxypeptidase E.

L Song 1, L D Fricker 1
PMCID: PMC1218305  PMID: 9173892

Abstract

Carboxypeptidase E (CPE) is initially synthesized as a larger precursor containing an additional 14-residue propeptide that is highly conserved between human and rat. Previous studies have established that the proenzyme is enzymically active and that deletion of the pro region does not affect the expression of the active enzyme. In the present study the function of the pro region was examined both by deleting this region from CPE and by attaching this region to the N-terminus of albumin. CPE lacking the pro region is sorted into the regulated secretory pathway in AtT-20 cells, based on confocal microscopy and examination of the stimulated secretion of the protein. Stimulation of AtT-20 cells with either forskolin or phorbol 12-myristate 13-acetate induces the secretion of wild-type CPE and of CPE lacking the pro region to similar extents, indicating a similar efficiency of sorting of the mutant. When the pro region of proalbumin is replaced with the pro region of CPE followed by expression in AtT-20 cells, the protein is not sorted into the regulated pathway, based on the lack of stimulated secretion. Confocal microscopy suggests that the proCPE/albumin protein is retained in the endoplasmic reticulum to a greater extent than is proalbumin. Pulse-chase analysis indicates that the pro region of CPE is not efficiently removed from the N-terminus of albumin, and the small amount of propeptide cleavage that does occur takes place soon before secretion of the protein. In contrast, confocal microscopy indicates that the majority of the propeptide is removed from CPE, and that this cleavage occurs in the trans-Golgi network or soon after sorting into the secretory vesicles. Taken together, these results suggest that the pro region of CPE is not required for the expression or intracellular routeing of this protein.

Full Text

The Full Text of this article is available as a PDF (419.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Docherty K., Steiner D. F. Post-translational proteolysis in polypeptide hormone biosynthesis. Annu Rev Physiol. 1982;44:625–638. doi: 10.1146/annurev.ph.44.030182.003205. [DOI] [PubMed] [Google Scholar]
  2. Fortenberry S. C., Chirgwin J. M. The propeptide is nonessential for the expression of human cathepsin D. J Biol Chem. 1995 Apr 28;270(17):9778–9782. doi: 10.1074/jbc.270.17.9778. [DOI] [PubMed] [Google Scholar]
  3. Fricker L. D., Adelman J. P., Douglass J., Thompson R. C., von Strandmann R. P., Hutton J. Isolation and sequence analysis of cDNA for rat carboxypeptidase E [EC 3.4.17.10], a neuropeptide processing enzyme. Mol Endocrinol. 1989 Apr;3(4):666–673. doi: 10.1210/mend-3-4-666. [DOI] [PubMed] [Google Scholar]
  4. Fricker L. D. Carboxypeptidase E. Annu Rev Physiol. 1988;50:309–321. doi: 10.1146/annurev.ph.50.030188.001521. [DOI] [PubMed] [Google Scholar]
  5. Fricker L. D., Das B., Angeletti R. H. Identification of the pH-dependent membrane anchor of carboxypeptidase E (EC 3.4.17.10). J Biol Chem. 1990 Feb 15;265(5):2476–2482. [PubMed] [Google Scholar]
  6. Fricker L. D., Devi L. Posttranslational processing of carboxypeptidase E, a neuropeptide-processing enzyme, in AtT-20 cells and bovine pituitary secretory granules. J Neurochem. 1993 Oct;61(4):1404–1415. doi: 10.1111/j.1471-4159.1993.tb13634.x. [DOI] [PubMed] [Google Scholar]
  7. Fricker L. D., Evans C. J., Esch F. S., Herbert E. Cloning and sequence analysis of cDNA for bovine carboxypeptidase E. Nature. 1986 Oct 2;323(6087):461–464. doi: 10.1038/323461a0. [DOI] [PubMed] [Google Scholar]
  8. Inouye M. Intramolecular chaperone: the role of the pro-peptide in protein folding. Enzyme. 1991;45(5-6):314–321. doi: 10.1159/000468904. [DOI] [PubMed] [Google Scholar]
  9. Mains R. E., Milgram S. L., Keutmann H. T., Eipper B. A. The NH2-terminal proregion of peptidylglycine alpha-amidating monooxygenase facilitates the secretion of soluble proteins. Mol Endocrinol. 1995 Jan;9(1):3–13. doi: 10.1210/mend.9.1.7760848. [DOI] [PubMed] [Google Scholar]
  10. Manser E., Fernandez D., Lim L. Processing and secretion of human carboxypeptidase E by C6 glioma cells. Biochem J. 1991 Dec 15;280(Pt 3):695–701. doi: 10.1042/bj2800695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Manser E., Fernandez D., Loo L., Goh P. Y., Monfries C., Hall C., Lim L. Human carboxypeptidase E. Isolation and characterization of the cDNA, sequence conservation, expression and processing in vitro. Biochem J. 1990 Apr 15;267(2):517–525. doi: 10.1042/bj2670517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matsuuchi L., Buckley K. M., Lowe A. W., Kelly R. B. Targeting of secretory vesicles to cytoplasmic domains in AtT-20 and PC-12 cells. J Cell Biol. 1988 Feb;106(2):239–251. doi: 10.1083/jcb.106.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McCracken A. A., Kruse K. B. Intracellular transport of rat serum albumin is altered by a genetically engineered deletion of the propeptide. J Biol Chem. 1989 Dec 15;264(35):20843–20846. [PubMed] [Google Scholar]
  14. Milgram S. L., Mains R. E., Eipper B. A. COOH-terminal signals mediate the trafficking of a peptide processing enzyme in endocrine cells. J Cell Biol. 1993 Apr;121(1):23–36. doi: 10.1083/jcb.121.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mitra A., Song L., Fricker L. D. The C-terminal region of carboxypeptidase E is involved in membrane binding and intracellular routing in AtT-20 cells. J Biol Chem. 1994 Aug 5;269(31):19876–19881. [PubMed] [Google Scholar]
  16. Naggert J. K., Fricker L. D., Varlamov O., Nishina P. M., Rouille Y., Steiner D. F., Carroll R. J., Paigen B. J., Leiter E. H. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet. 1995 Jun;10(2):135–142. doi: 10.1038/ng0695-135. [DOI] [PubMed] [Google Scholar]
  17. Parkinson D. Two soluble forms of bovine carboxypeptidase H have different NH2-terminal sequences. J Biol Chem. 1990 Oct 5;265(28):17101–17105. [PubMed] [Google Scholar]
  18. Roth W. W., Mackin R. B., Spiess J., Goodman R. H., Noe B. D. Primary structure and tissue distribution of anglerfish carboxypeptidase H. Mol Cell Endocrinol. 1991 Jul;78(3):171–178. doi: 10.1016/0303-7207(91)90120-h. [DOI] [PubMed] [Google Scholar]
  19. Song L., Fricker L. D. Purification and characterization of carboxypeptidase D, a novel carboxypeptidase E-like enzyme, from bovine pituitary. J Biol Chem. 1995 Oct 20;270(42):25007–25013. doi: 10.1074/jbc.270.42.25007. [DOI] [PubMed] [Google Scholar]
  20. Song L., Fricker L. Processing of procarboxypeptidase E into carboxypeptidase E occurs in secretory vesicles. J Neurochem. 1995 Jul;65(1):444–453. doi: 10.1046/j.1471-4159.1995.65010444.x. [DOI] [PubMed] [Google Scholar]
  21. Varlamov O., Fricker L. D. The C-terminal region of carboxypeptidase E involved in membrane binding is distinct from the region involved with intracellular routing. J Biol Chem. 1996 Mar 15;271(11):6077–6083. doi: 10.1074/jbc.271.11.6077. [DOI] [PubMed] [Google Scholar]
  22. Varlamov O., Leiter E. H., Fricker L. Induced and spontaneous mutations at Ser202 of carboxypeptidase E. Effect on enzyme expression, activity, and intracellular routing. J Biol Chem. 1996 Jun 14;271(24):13981–13986. doi: 10.1074/jbc.271.24.13981. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES