Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Apr 1;323(Pt 1):39–43. doi: 10.1042/bj3230039

Glutathione transferase mimics: micellar catalysis of an enzymic reaction.

B Lindkvist 1, R Weinander 1, L Engman 1, M Koetse 1, J B Engberts 1, R Morgenstern 1
PMCID: PMC1218312  PMID: 9173899

Abstract

Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic substitution reaction is enhanced by the following surfactants in descending order: poly(dimethyldiallylammonium - co - dodecylmethyldiallylammonium) bromide (86/14) >>cetyltrimethylammonium bromide>zwittergent 3-16 (n-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulphonate)>zwittergent+ ++ 3-14 (n-tetradecyl-N,N-dimethyl - 3 - ammonio -1 - propanesulphonate) approximately N,N - dimethyl - laurylamine N-oxide>N,N-dimethyloctylamine N-oxide. The most efficient catalyst studied is a polymeric material that incorporates surfactant properties (n-dodecylmethyldiallylammonium bromide) and opens up possibilities for engineering sequences of reactions on a polymeric support. Michael addition to alpha,beta-unsaturated carbonyls is exemplified by a model substance, trans-4-phenylbut-3-en-2-one, and a toxic compound that is formed during oxidative stress, 4-hydroxy-2-undecenal. The latter compound is conjugated with the highest efficiency of those tested. Micellar catalysts can thus be viewed as simple models for the glutathione transferases highlighting the influence of a positive electrostatic field and a non-specific hydrophobic binding site, pertaining to two catalytic aspects, namely thiolate anion stabilization and solvent shielding.

Full Text

The Full Text of this article is available as a PDF (292.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. doi: 10.1126/science.6351251. [DOI] [PubMed] [Google Scholar]
  2. Andersson C., Piemonte F., Mosialou E., Weinander R., Sun T. H., Lundqvist G., Adang A. E., Morgenstern R. Kinetic studies on rat liver microsomal glutathione transferase: consequences of activation. Biochim Biophys Acta. 1995 Mar 15;1247(2):277–283. doi: 10.1016/0167-4838(94)00239-d. [DOI] [PubMed] [Google Scholar]
  3. Armstrong R. N. Glutathione S-transferases: structure and mechanism of an archetypical detoxication enzyme. Adv Enzymol Relat Areas Mol Biol. 1994;69:1–44. doi: 10.1002/9780470123157.ch1. [DOI] [PubMed] [Google Scholar]
  4. Beauchamp R. O., Jr, Andjelkovich D. A., Kligerman A. D., Morgan K. T., Heck H. D. A critical review of the literature on acrolein toxicity. Crit Rev Toxicol. 1985;14(4):309–380. doi: 10.3109/10408448509037461. [DOI] [PubMed] [Google Scholar]
  5. Chasseaud L. F. The role of glutathione and glutathione S-transferases in the metabolism of chemical carcinogens and other electrophilic agents. Adv Cancer Res. 1979;29:175–274. doi: 10.1016/s0065-230x(08)60848-9. [DOI] [PubMed] [Google Scholar]
  6. Gonzalez P. K., Zhuang J., Doctrow S. R., Malfroy B., Benson P. F., Menconi M. J., Fink M. P. EUK-8, a synthetic superoxide dismutase and catalase mimetic, ameliorates acute lung injury in endotoxemic swine. J Pharmacol Exp Ther. 1995 Nov;275(2):798–806. [PubMed] [Google Scholar]
  7. Graminski G. F., Kubo Y., Armstrong R. N. Spectroscopic and kinetic evidence for the thiolate anion of glutathione at the active site of glutathione S-transferase. Biochemistry. 1989 Apr 18;28(8):3562–3568. doi: 10.1021/bi00434a062. [DOI] [PubMed] [Google Scholar]
  8. Graminski G. F., Zhang P. H., Sesay M. A., Ammon H. L., Armstrong R. N. Formation of the 1-(S-glutathionyl)-2,4,6-trinitrocyclohexadienate anion at the active site of glutathione S-transferase: evidence for enzymic stabilization of sigma-complex intermediates in nucleophilic aromatic substitution reactions. Biochemistry. 1989 Jul 25;28(15):6252–6258. doi: 10.1021/bi00441a017. [DOI] [PubMed] [Google Scholar]
  9. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  10. Keen J. H., Habig W. H., Jakoby W. B. Mechanism for the several activities of the glutathione S-transferases. J Biol Chem. 1976 Oct 25;251(20):6183–6188. [PubMed] [Google Scholar]
  11. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  12. Morrow J. R. Artificial ribonucleases. Adv Inorg Biochem. 1994;9:41–74. [PubMed] [Google Scholar]
  13. Mosialou E., Piemonte F., Andersson C., Vos R. M., van Bladeren P. J., Morgenstern R. Microsomal glutathione transferase: lipid-derived substrates and lipid dependence. Arch Biochem Biophys. 1995 Jul 10;320(2):210–216. doi: 10.1016/0003-9861(95)90002-0. [DOI] [PubMed] [Google Scholar]
  14. Parton R. F., Vankelecom I. F., Casselman M. J., Bezoukhanova C. P., Uytterhoeven J. B., Jacobs P. A. An efficient mimic of cytochrome P-450 from a zeolite-encaged iron complex in a polymer membrane. Nature. 1994 Aug 18;370(6490):541–544. doi: 10.1038/370541a0. [DOI] [PubMed] [Google Scholar]
  15. Reddan J. R., Sevilla M. D., Giblin F. J., Padgaonkar V., Dziedzic D. C., Leverenz V., Misra I. C., Peters J. L. The superoxide dismutase mimic TEMPOL protects cultured rabbit lens epithelial cells from hydrogen peroxide insult. Exp Eye Res. 1993 May;56(5):543–554. doi: 10.1006/exer.1993.1068. [DOI] [PubMed] [Google Scholar]
  16. Roberts D. D., Lewis S. D., Ballou D. P., Olson S. T., Shafer J. A. Reactivity of small thiolate anions and cysteine-25 in papain toward methyl methanethiosulfonate. Biochemistry. 1986 Sep 23;25(19):5595–5601. doi: 10.1021/bi00367a038. [DOI] [PubMed] [Google Scholar]
  17. Sawyer D. T., Liu X., Redman C., Chong B. Iron(II)/reductant(DH2)-induced activation of dioxygen for the hydroxylation and ketonization of hydrocarbons; mimics for the cytochrome P-450 hydroxylase/reductase system. Bioorg Med Chem. 1994 Dec;2(12):1385–1395. doi: 10.1016/s0968-0896(00)82090-8. [DOI] [PubMed] [Google Scholar]
  18. Schultz P. G. The interplay between chemistry and biology in the design of enzymatic catalysts. Science. 1988 Apr 22;240(4851):426–433. doi: 10.1126/science.2833815. [DOI] [PubMed] [Google Scholar]
  19. Sies H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic Biol Med. 1993 Mar;14(3):313–323. doi: 10.1016/0891-5849(93)90028-s. [DOI] [PubMed] [Google Scholar]
  20. Sies H. Ebselen: a glutathione peroxidase mimic. Methods Enzymol. 1994;234:476–482. doi: 10.1016/0076-6879(94)34118-4. [DOI] [PubMed] [Google Scholar]
  21. Sorenson J. R. Bis(3,5-diisopropylsalicylato)copper(II), a potent radioprotectant with superoxide dismutase mimetic activity. J Med Chem. 1984 Dec;27(12):1747–1749. doi: 10.1021/jm00378a040. [DOI] [PubMed] [Google Scholar]
  22. Waldrop M. M. "Chemzymes" mimic biology in miniature. Science. 1989 Jul 28;245(4916):354–355. doi: 10.1126/science.2756423. [DOI] [PubMed] [Google Scholar]
  23. Weinander R., Anderson C., Morgenstern R. Identification of N-acetylcysteine as a new substrate for rat liver microsomal glutathione transferase. A study of thiol ligands. J Biol Chem. 1994 Jan 7;269(1):71–76. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES