Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Apr 1;323(Pt 1):51–60. doi: 10.1042/bj3230051

N-terminal type I modules required for fibronectin binding to fibroblasts and to fibronectin's III1 module.

J Sottile 1, D F Mosher 1
PMCID: PMC1218314  PMID: 9173901

Abstract

Assembly of fibronectin fibrils occurs at the surface of substrate-attached cells and is mediated by the first to the fifth type I modules in the N-terminal 70 kDa portion of the molecule. The first type III module (III1) of fibronectin, not present in the 70 kDa portion, contains a conformation-dependent binding site for the 70 kDa N-terminal region of fibronectin, suggesting that the III1 module on cell-surface fibronectin may serve as a binding site for fibronectin's N-terminus on substrate-attached cells. To explore this possiblility, we compared the ability of mutant recombinant 70 kDa proteins containing deletions of one or several of the first five type I modules to bind to fibroblasts and to III1. Proteins containing the fourth and fiftBiomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI 53706U.S.A.Assembly of fibronectin fibrils occurs at the surface of substrate-attached cells and is mediated by the first to the fifth type I modules in the N-terminal 70 kDa portion of the molecule. The first type III module (III1) of fibronectin, not present in the 70 kDa portion, contains a conh as 70 kDa deletion mutants lacking I4 and I5 also bound to the cell surface, and deletion mutants lacking I1-3 and I4-5 both competed only partially for binding of 125I-labelled fibronectin or 70 kDa protein. These data indicate that the N-terminal part of fibronectin binds to III1 via I4 and I5 and that interactions in addition to that of I4 and I5 with III1 are important for cell-surface-mediated fibronectin polymerization.

Full Text

The Full Text of this article is available as a PDF (665.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguirre K. M., McCormick R. J., Schwarzbauer J. E. Fibronectin self-association is mediated by complementary sites within the amino-terminal one-third of the molecule. J Biol Chem. 1994 Nov 11;269(45):27863–27868. [PubMed] [Google Scholar]
  2. Akiyama S. K., Yamada S. S., Chen W. T., Yamada K. M. Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J Cell Biol. 1989 Aug;109(2):863–875. doi: 10.1083/jcb.109.2.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balian G., Click E. M., Crouch E., Davidson J. M., Bornstein P. Isolation of a collagen-binding fragment from fibronectin and cold-insoluble globulin. J Biol Chem. 1979 Mar 10;254(5):1429–1432. [PubMed] [Google Scholar]
  4. Baron M., Norman D., Willis A., Campbell I. D. Structure of the fibronectin type 1 module. Nature. 1990 Jun 14;345(6276):642–646. doi: 10.1038/345642a0. [DOI] [PubMed] [Google Scholar]
  5. Boucaut J. C., Darribère T., Boulekbache H., Thiery J. P. Prevention of gastrulation but not neurulation by antibodies to fibronectin in amphibian embryos. 1984 Jan 26-Feb 1Nature. 307(5949):364–367. doi: 10.1038/307364a0. [DOI] [PubMed] [Google Scholar]
  6. Chernousov M. A., Fogerty F. J., Koteliansky V. E., Mosher D. F. Role of the I-9 and III-1 modules of fibronectin in formation of an extracellular fibronectin matrix. J Biol Chem. 1991 Jun 15;266(17):10851–10858. [PubMed] [Google Scholar]
  7. Dzamba B. J., Bultmann H., Akiyama S. K., Peters D. M. Substrate-specific binding of the amino terminus of fibronectin to an integrin complex in focal adhesions. J Biol Chem. 1994 Jul 29;269(30):19646–19652. [PubMed] [Google Scholar]
  8. Fogerty F. J., Akiyama S. K., Yamada K. M., Mosher D. F. Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (alpha 5 beta 1) antibodies. J Cell Biol. 1990 Aug;111(2):699–708. doi: 10.1083/jcb.111.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fogerty F. J., Mosher D. F. Mechanisms for organization of fibronectin matrix. Cell Differ Dev. 1990 Dec 2;32(3):439–450. doi: 10.1016/0922-3371(90)90061-z. [DOI] [PubMed] [Google Scholar]
  10. George E. L., Georges-Labouesse E. N., Patel-King R. S., Rayburn H., Hynes R. O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development. 1993 Dec;119(4):1079–1091. doi: 10.1242/dev.119.4.1079. [DOI] [PubMed] [Google Scholar]
  11. Hershberger P. A., Dickson J. A., Friesen P. D. Site-specific mutagenesis of the 35-kilodalton protein gene encoded by Autographa californica nuclear polyhedrosis virus: cell line-specific effects on virus replication. J Virol. 1992 Sep;66(9):5525–5533. doi: 10.1128/jvi.66.9.5525-5533.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hocking D. C., Smith R. K., McKeown-Longo P. J. A novel role for the integrin-binding III-10 module in fibronectin matrix assembly. J Cell Biol. 1996 Apr;133(2):431–444. doi: 10.1083/jcb.133.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hocking D. C., Sottile J., McKeown-Longo P. J. Fibronectin's III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. J Biol Chem. 1994 Jul 22;269(29):19183–19187. [PubMed] [Google Scholar]
  14. Huff S., Matsuka Y. V., McGavin M. J., Ingham K. C. Interaction of N-terminal fragments of fibronectin with synthetic and recombinant D motifs from its binding protein on Staphylococcus aureus studied using fluorescence anisotropy. J Biol Chem. 1994 Jun 3;269(22):15563–15570. [PubMed] [Google Scholar]
  15. Hörmann H., Seidl M. Affinity chromatography on immobilized fibrin monomer, III. The fibrin affinity center of fibronectin. Hoppe Seylers Z Physiol Chem. 1980 Sep;361(9):1449–1452. [PubMed] [Google Scholar]
  16. Labat-Robert J., Szendroi M., Godeau G., Robert L. Comparative distribution patterns of type I and III collagens and fibronectin in human arteriosclerotic aorta. Pathol Biol (Paris) 1985 Apr;33(4):261–265. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lerch R. A., Friesen P. D. The 35-kilodalton protein gene (p35) of Autographa californica nuclear polyhedrosis virus and the neomycin resistance gene provide dominant selection of recombinant baculoviruses. Nucleic Acids Res. 1993 Apr 25;21(8):1753–1760. doi: 10.1093/nar/21.8.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Litvinovich S. V., Strickland D. K., Medved L. V., Ingham K. C. Domain structure and interactions of the type I and type II modules in the gelatin-binding region of fibronectin. All six modules are independently folded. J Mol Biol. 1991 Feb 5;217(3):563–575. doi: 10.1016/0022-2836(91)90758-x. [DOI] [PubMed] [Google Scholar]
  20. Matsuka Y. V., Medved L. V., Brew S. A., Ingham K. C. The NH2-terminal fibrin-binding site of fibronectin is formed by interacting fourth and fifth finger domains. Studies with recombinant finger fragments expressed in Escherichia coli. J Biol Chem. 1994 Apr 1;269(13):9539–9546. [PubMed] [Google Scholar]
  21. Matsuura Y., Possee R. D., Overton H. A., Bishop D. H. Baculovirus expression vectors: the requirements for high level expression of proteins, including glycoproteins. J Gen Virol. 1987 May;68(Pt 5):1233–1250. doi: 10.1099/0022-1317-68-5-1233. [DOI] [PubMed] [Google Scholar]
  22. McDonald J. A. Extracellular matrix assembly. Annu Rev Cell Biol. 1988;4:183–207. doi: 10.1146/annurev.cb.04.110188.001151. [DOI] [PubMed] [Google Scholar]
  23. McDonald J. A., Quade B. J., Broekelmann T. J., LaChance R., Forsman K., Hasegawa E., Akiyama S. Fibronectin's cell-adhesive domain and an amino-terminal matrix assembly domain participate in its assembly into fibroblast pericellular matrix. J Biol Chem. 1987 Mar 5;262(7):2957–2967. [PubMed] [Google Scholar]
  24. McKeown-Longo P. J., Mosher D. F. Interaction of the 70,000-mol-wt amino-terminal fragment of fibronectin with the matrix-assembly receptor of fibroblasts. J Cell Biol. 1985 Feb;100(2):364–374. doi: 10.1083/jcb.100.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McKeown-Longo P. J., Mosher D. F. Mechanism of formation of disulfide-bonded multimers of plasma fibronectin in cell layers of cultured human fibroblasts. J Biol Chem. 1984 Oct 10;259(19):12210–12215. [PubMed] [Google Scholar]
  26. Morla A., Ruoslahti E. A fibronectin self-assembly site involved in fibronectin matrix assembly: reconstruction in a synthetic peptide. J Cell Biol. 1992 Jul;118(2):421–429. doi: 10.1083/jcb.118.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morla A., Zhang Z., Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature. 1994 Jan 13;367(6459):193–196. doi: 10.1038/367193a0. [DOI] [PubMed] [Google Scholar]
  28. Mosher D. F., Johnson R. B. Specificity of fibronectin--fibrin cross-linking. Ann N Y Acad Sci. 1983 Jun 27;408:583–594. doi: 10.1111/j.1749-6632.1983.tb23275.x. [DOI] [PubMed] [Google Scholar]
  29. Mosher D. F., Proctor R. A. Binding and factor XIIIa-mediated cross-linking of a 27-kilodalton fragment of fibronectin to Staphylococcus aureus. Science. 1980 Aug 22;209(4459):927–929. doi: 10.1126/science.7403857. [DOI] [PubMed] [Google Scholar]
  30. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  31. Quade B. J., McDonald J. A. Fibronectin's amino-terminal matrix assembly site is located within the 29-kDa amino-terminal domain containing five type I repeats. J Biol Chem. 1988 Dec 25;263(36):19602–19609. [PubMed] [Google Scholar]
  32. Rostagno A., Williams M. J., Baron M., Campbell I. D., Gold L. I. Further characterization of the NH2-terminal fibrin-binding site on fibronectin. J Biol Chem. 1994 Dec 16;269(50):31938–31945. [PubMed] [Google Scholar]
  33. Russell D. W., Brown M. S., Goldstein J. L. Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. J Biol Chem. 1989 Dec 25;264(36):21682–21688. [PubMed] [Google Scholar]
  34. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Small J. V., Celis J. E. Filament arrangements in negatively stained cultured cells: the organization of actin. Cytobiologie. 1978 Feb;16(2):308–325. [PubMed] [Google Scholar]
  36. Somers C. E., Mosher D. F. Protein kinase C modulation of fibronectin matrix assembly. J Biol Chem. 1993 Oct 25;268(30):22277–22280. [PubMed] [Google Scholar]
  37. Sottile J., Mosher D. F. Assembly of fibronectin molecules with mutations or deletions of the carboxyl-terminal type I modules. Biochemistry. 1993 Feb 16;32(6):1641–1647. doi: 10.1021/bi00057a031. [DOI] [PubMed] [Google Scholar]
  38. Sottile J., Schwarzbauer J., Selegue J., Mosher D. F. Five type I modules of fibronectin form a functional unit that binds to fibroblasts and Staphylococcus aureus. J Biol Chem. 1991 Jul 15;266(20):12840–12843. [PubMed] [Google Scholar]
  39. Sottile J., Selegue J., Mosher D. F. Recombinant 70-kDa protein from the amino-terminal region of rat fibronectin inhibits binding of fibronectin to cells and bacteria. Protein Expr Purif. 1990 Nov;1(2):104–110. doi: 10.1016/1046-5928(90)90002-g. [DOI] [PubMed] [Google Scholar]
  40. Sottile J., Wiley S. Assembly of amino-terminal fibronectin dimers into the extracellular matrix. J Biol Chem. 1994 Jun 24;269(25):17192–17198. [PubMed] [Google Scholar]
  41. Stenman S., von Smitten K., Vaheri A. Fibronectin and atherosclerosis. Acta Med Scand Suppl. 1980;642:165–170. doi: 10.1111/j.0954-6820.1980.tb10949.x. [DOI] [PubMed] [Google Scholar]
  42. Williams M. J., Phan I., Harvey T. S., Rostagno A., Gold L. I., Campbell I. D. Solution structure of a pair of fibronectin type 1 modules with fibrin binding activity. J Mol Biol. 1994 Jan 28;235(4):1302–1311. doi: 10.1006/jmbi.1994.1083. [DOI] [PubMed] [Google Scholar]
  43. Wu C., Bauer J. S., Juliano R. L., McDonald J. A. The alpha 5 beta 1 integrin fibronectin receptor, but not the alpha 5 cytoplasmic domain, functions in an early and essential step in fibronectin matrix assembly. J Biol Chem. 1993 Oct 15;268(29):21883–21888. [PubMed] [Google Scholar]
  44. Zhang Q., Checovich W. J., Peters D. M., Albrecht R. M., Mosher D. F. Modulation of cell surface fibronectin assembly sites by lysophosphatidic acid. J Cell Biol. 1994 Dec;127(5):1447–1459. doi: 10.1083/jcb.127.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zhang Z., Morla A. O., Vuori K., Bauer J. S., Juliano R. L., Ruoslahti E. The alpha v beta 1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin. J Cell Biol. 1993 Jul;122(1):235–242. doi: 10.1083/jcb.122.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES